""" This script demonstrates how to implement torchvision image augmentation on an instance of a LeRobotDataset and how to show some transformed images. The transformations are passed to the dataset as an argument upon creation, and transforms are applied to the observation images before they are returned. """ from pathlib import Path from torchvision.transforms import ToPILImage, v2 from lerobot.common.datasets.lerobot_dataset import LeRobotDataset to_pil = ToPILImage() # Create a directory to store output images output_dir = Path("outputs/image_transforms") output_dir.mkdir(parents=True, exist_ok=True) repo_id = "lerobot/aloha_static_tape" # Create a LeRobotDataset with no transformations dataset = LeRobotDataset(repo_id, image_transforms=None) # Get the index of the first observation in the first episode first_idx = dataset.episode_data_index["from"][0].item() # Get the frame corresponding to the first camera frame = dataset[first_idx][dataset.camera_keys[0]] # Save the original frame to_pil(frame).save(output_dir / "original_frame.png", quality=100) print(f"Original frame saved to {output_dir / 'original_frame.png'}.") # Define the transformations transforms = v2.Compose( [ v2.ColorJitter(brightness=(0.5, 1.5)), v2.ColorJitter(contrast=(0.5, 1.5)), v2.RandomAdjustSharpness(sharpness_factor=2, p=1), ] ) # Create another LeRobotDataset with the defined transformations transformed_dataset = LeRobotDataset(repo_id, image_transforms=transforms) # Get a frame from the transformed dataset transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]] # Save the transformed frame to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100) print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")