lerobot/test.py

331 lines
12 KiB
Python

# TODO(rcadene): add tests
# TODO(rcadene): what is the best format to store/load videos?
import subprocess
from collections.abc import Callable
from pathlib import Path
import einops
import torch
import torchaudio
import torchrl
from matplotlib import pyplot as plt
from tensordict import TensorDict
from torchaudio.utils import ffmpeg_utils
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SliceSampler, SliceSamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.envs.transforms.transforms import Compose
from lerobot.common.datasets.transforms import DecodeVideoTransform, KeepFrames, ViewSliceHorizonTransform
from lerobot.common.utils import set_seed
NUM_STATE_CHANNELS = 12
NUM_ACTION_CHANNELS = 12
def count_frames(video_path):
try:
# Construct the ffprobe command to get the number of frames
cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=nb_frames",
"-of",
"default=nokey=1:noprint_wrappers=1",
video_path,
]
# Execute the ffprobe command and capture the output
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# Convert the output to an integer
num_frames = int(result.stdout.strip())
return num_frames
except Exception as e:
print(f"An error occurred: {e}")
return -1
def get_frame_rate(video_path):
try:
cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate",
"-of",
"default=nokey=1:noprint_wrappers=1",
video_path,
]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# The frame rate is typically represented as a fraction (e.g., "30000/1001").
# To convert it to a float, we can evaluate the fraction.
frame_rate = eval(result.stdout.strip())
return frame_rate
except Exception as e:
print(f"An error occurred: {e}")
return -1
def get_frame_timestamps(frame_rate, num_frames):
timestamps = [(1 / frame_rate) * i for i in range(num_frames)]
return timestamps
# class ClearDeviceTransform(Transform):
# invertible = False
# def __init__(self):
# super().__init__()
# def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
# # _reset is called once when the environment reset to normalize the first observation
# tensordict_reset = self._call(tensordict_reset)
# return tensordict_reset
# @dispatch(source="in_keys", dest="out_keys")
# def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
# return self._call(tensordict)
# def _call(self, td: TensorDictBase) -> TensorDictBase:
# td.clear_device_()
# return td
class VideoExperienceReplay(TensorDictReplayBuffer):
def __init__(
self,
batch_size: int = None,
*,
root: Path = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
self.data_dir = root
self.rb_dir = self.data_dir / "replay_buffer"
storage, meta_data = self._load_or_download()
# hack to access video paths
assert isinstance(transform, Compose)
for tf in transform:
if isinstance(tf, DecodeVideoTransform):
tf.set_video_id_to_path(meta_data["video_id_to_path"])
super().__init__(
storage=storage,
sampler=sampler,
writer=ImmutableDatasetWriter() if writer is None else writer,
collate_fn=_collate_id if collate_fn is None else collate_fn,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
transform=transform,
)
def _load_or_download(self, force_download=False):
if not force_download and self.data_dir.exists():
storage = TensorStorage(TensorDict.load_memmap(self.rb_dir))
meta_data = torch.load(self.data_dir / "meta_data.pth")
else:
storage, meta_data = self._download()
torch.save(meta_data, self.data_dir / "meta_data.pth")
# required to not send cuda frames to cpu by default
storage._storage.clear_device_()
return storage, meta_data
def _download(self):
num_episodes = 1
video_id_to_path = {}
for episode_id in range(num_episodes):
video_path = torchaudio.utils.download_asset(
"tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4"
)
# several episodes can belong to the same video
video_id = episode_id
video_id_to_path[video_id] = video_path
print(f"{video_path=}")
num_frames = count_frames(video_path)
print(f"{num_frames=}")
frame_rate = get_frame_rate(video_path)
print(f"{frame_rate=}")
frame_timestamps = get_frame_timestamps(frame_rate, num_frames)
reward = torch.zeros(num_frames, 1, dtype=torch.float32)
success = torch.zeros(num_frames, 1, dtype=torch.bool)
done = torch.zeros(num_frames, 1, dtype=torch.bool)
state = torch.randn(num_frames, NUM_STATE_CHANNELS, dtype=torch.float32)
action = torch.randn(num_frames, NUM_ACTION_CHANNELS, dtype=torch.float32)
timestamp = torch.tensor(frame_timestamps)
frame_id = torch.arange(0, num_frames, 1)
episode_id_tensor = torch.tensor([episode_id] * num_frames, dtype=torch.int)
video_id_tensor = torch.tensor([video_id] * num_frames, dtype=torch.int)
# last step of demonstration is considered done
done[-1] = True
ep_td = TensorDict(
{
("observation", "frame", "video_id"): video_id_tensor[:-1],
("observation", "frame", "timestamp"): timestamp[:-1],
("observation", "state"): state[:-1],
"action": action[:-1],
"episode": episode_id_tensor[:-1],
"frame_id": frame_id[:-1],
("next", "observation", "frame", "video_id"): video_id_tensor[1:],
("next", "observation", "frame", "timestamp"): timestamp[1:],
("next", "observation", "state"): state[1:],
("next", "reward"): reward[1:],
("next", "done"): done[1:],
("next", "success"): success[1:],
},
batch_size=num_frames - 1,
)
# TODO:
total_frames = num_frames - 1
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_frames).memmap_like(self.rb_dir)
td_data[:] = ep_td
meta_data = {
"video_id_to_path": video_id_to_path,
}
return TensorStorage(td_data.lock_()), meta_data
if __name__ == "__main__":
import time
import tqdm
print("FFmpeg Library versions:")
for k, ver in ffmpeg_utils.get_versions().items():
print(f" {k}:\t{'.'.join(str(v) for v in ver)}")
print("Available NVDEC Decoders:")
for k in ffmpeg_utils.get_video_decoders().keys(): # noqa: SIM118
if "cuvid" in k:
print(f" - {k}")
def create_replay_buffer(device, format=None):
data_dir = Path("tmp/2024_03_17_data_video/pusht")
num_slices = 1
horizon = 2
batch_size = num_slices * horizon
sampler = SliceSamplerWithoutReplacement(
num_slices=num_slices,
strict_length=True,
shuffle=False,
)
transforms = [
# ClearDeviceTransform(),
ViewSliceHorizonTransform(num_slices, horizon),
KeepFrames(positions=[0], in_keys=[("observation")]),
DecodeVideoTransform(
data_dir=data_dir,
device=device,
frame_rate=None,
format=format,
in_keys=[("observation", "frame")],
out_keys=[("observation", "frame", "data")],
),
]
replay_buffer = VideoExperienceReplay(
root=data_dir,
batch_size=batch_size,
# prefetch=4,
transform=Compose(*transforms),
sampler=sampler,
)
return replay_buffer
def test_time():
replay_buffer = create_replay_buffer(device="cuda")
start = time.monotonic()
for _ in tqdm.tqdm(range(2)):
# include_info=False is required to not have a batch_size mismatch error with the truncated key (2,8) != (16, 1)
replay_buffer.sample(include_info=False)
torch.cuda.synchronize()
print(time.monotonic() - start)
start = time.monotonic()
for _ in tqdm.tqdm(range(10)):
replay_buffer.sample(include_info=False)
torch.cuda.synchronize()
print(time.monotonic() - start)
def test_plot(seed=1337):
rb_cuda = create_replay_buffer(device="cuda", format="yuv444p")
rb_cpu = create_replay_buffer(device="cpu", format="yuv444p")
n_rows = 2 # len(replay_buffer)
fig, axes = plt.subplots(n_rows, 3, figsize=[12.8, 16.0])
for i in range(n_rows):
set_seed(seed + i)
batch_cpu = rb_cpu.sample(include_info=False)
print("frame_ids cpu", batch_cpu["frame_id"].tolist())
print("episode cpu", batch_cpu["episode"].tolist())
print("timestamps cpu", batch_cpu["observation", "frame", "timestamp"].tolist())
frames = batch_cpu["observation", "frame", "data"]
frames = einops.rearrange(frames, "b t c h w -> (b t) c h w")
frames = einops.rearrange(frames, "bt c h w -> bt h w c")
assert frames.shape[0] == 1
axes[i][0].imshow(frames[0])
set_seed(seed + i)
batch_cuda = rb_cuda.sample(include_info=False)
print("frame_ids cuda", batch_cuda["frame_id"].tolist())
print("episode cuda", batch_cuda["episode"].tolist())
print("timestamps cuda", batch_cuda["observation", "frame", "timestamp"].tolist())
frames = batch_cuda["observation", "frame", "data"]
frames = einops.rearrange(frames, "b t c h w -> (b t) c h w")
frames = einops.rearrange(frames, "bt c h w -> bt h w c")
assert frames.shape[0] == 1
axes[i][1].imshow(frames[0])
frames = batch_cuda["observation", "image"].type(torch.uint8)
frames = einops.rearrange(frames, "b t c h w -> (b t) c h w")
frames = einops.rearrange(frames, "bt c h w -> bt h w c")
assert frames.shape[0] == 1
axes[i][2].imshow(frames[0])
axes[0][0].set_title("Software decoder")
axes[0][1].set_title("HW decoder")
axes[0][2].set_title("uint8")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
fig.savefig(rb_cuda.data_dir / "test.png", dpi=300)
# test_time()
test_plot()