874 lines
36 KiB
Python
874 lines
36 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import enum
|
|
import logging
|
|
import math
|
|
import time
|
|
import traceback
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import tqdm
|
|
|
|
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
|
|
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
|
from lerobot.common.utils.utils import capture_timestamp_utc
|
|
|
|
PROTOCOL_VERSION = 2.0
|
|
BAUDRATE = 1_000_000
|
|
TIMEOUT_MS = 1000
|
|
|
|
MAX_ID_RANGE = 252
|
|
|
|
# The following bounds define the lower and upper joints range (after calibration).
|
|
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
|
|
# which corresponds to a half rotation on the left and half rotation on the right.
|
|
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
|
|
# an error is raised.
|
|
LOWER_BOUND_DEGREE = -270
|
|
UPPER_BOUND_DEGREE = 270
|
|
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
|
|
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
|
|
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
|
|
# [-10, 110] until an error is raised.
|
|
LOWER_BOUND_LINEAR = -10
|
|
UPPER_BOUND_LINEAR = 110
|
|
|
|
HALF_TURN_DEGREE = 180
|
|
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
|
|
# https://emanual.robotis.com/docs/en/dxl/x/xc430-w150
|
|
|
|
# data_name: (address, size_byte)
|
|
X_SERIES_CONTROL_TABLE = {
|
|
"Model_Number": (0, 2),
|
|
"Model_Information": (2, 4),
|
|
"Firmware_Version": (6, 1),
|
|
"ID": (7, 1),
|
|
"Baud_Rate": (8, 1),
|
|
"Return_Delay_Time": (9, 1),
|
|
"Drive_Mode": (10, 1),
|
|
"Operating_Mode": (11, 1),
|
|
"Secondary_ID": (12, 1),
|
|
"Protocol_Type": (13, 1),
|
|
"Homing_Offset": (20, 4),
|
|
"Moving_Threshold": (24, 4),
|
|
"Temperature_Limit": (31, 1),
|
|
"Max_Voltage_Limit": (32, 2),
|
|
"Min_Voltage_Limit": (34, 2),
|
|
"PWM_Limit": (36, 2),
|
|
"Current_Limit": (38, 2),
|
|
"Acceleration_Limit": (40, 4),
|
|
"Velocity_Limit": (44, 4),
|
|
"Max_Position_Limit": (48, 4),
|
|
"Min_Position_Limit": (52, 4),
|
|
"Shutdown": (63, 1),
|
|
"Torque_Enable": (64, 1),
|
|
"LED": (65, 1),
|
|
"Status_Return_Level": (68, 1),
|
|
"Registered_Instruction": (69, 1),
|
|
"Hardware_Error_Status": (70, 1),
|
|
"Velocity_I_Gain": (76, 2),
|
|
"Velocity_P_Gain": (78, 2),
|
|
"Position_D_Gain": (80, 2),
|
|
"Position_I_Gain": (82, 2),
|
|
"Position_P_Gain": (84, 2),
|
|
"Feedforward_2nd_Gain": (88, 2),
|
|
"Feedforward_1st_Gain": (90, 2),
|
|
"Bus_Watchdog": (98, 1),
|
|
"Goal_PWM": (100, 2),
|
|
"Goal_Current": (102, 2),
|
|
"Goal_Velocity": (104, 4),
|
|
"Profile_Acceleration": (108, 4),
|
|
"Profile_Velocity": (112, 4),
|
|
"Goal_Position": (116, 4),
|
|
"Realtime_Tick": (120, 2),
|
|
"Moving": (122, 1),
|
|
"Moving_Status": (123, 1),
|
|
"Present_PWM": (124, 2),
|
|
"Present_Current": (126, 2),
|
|
"Present_Velocity": (128, 4),
|
|
"Present_Position": (132, 4),
|
|
"Velocity_Trajectory": (136, 4),
|
|
"Position_Trajectory": (140, 4),
|
|
"Present_Input_Voltage": (144, 2),
|
|
"Present_Temperature": (146, 1),
|
|
}
|
|
|
|
X_SERIES_BAUDRATE_TABLE = {
|
|
0: 9_600,
|
|
1: 57_600,
|
|
2: 115_200,
|
|
3: 1_000_000,
|
|
4: 2_000_000,
|
|
5: 3_000_000,
|
|
6: 4_000_000,
|
|
}
|
|
|
|
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
|
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
|
|
|
MODEL_CONTROL_TABLE = {
|
|
"x_series": X_SERIES_CONTROL_TABLE,
|
|
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
|
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
|
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
|
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
|
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
|
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
|
}
|
|
|
|
MODEL_RESOLUTION = {
|
|
"x_series": 4096,
|
|
"xl330-m077": 4096,
|
|
"xl330-m288": 4096,
|
|
"xl430-w250": 4096,
|
|
"xm430-w350": 4096,
|
|
"xm540-w270": 4096,
|
|
"xc430-w150": 4096,
|
|
}
|
|
|
|
MODEL_BAUDRATE_TABLE = {
|
|
"x_series": X_SERIES_BAUDRATE_TABLE,
|
|
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
|
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
|
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
|
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
|
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
|
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
|
}
|
|
|
|
NUM_READ_RETRY = 10
|
|
NUM_WRITE_RETRY = 10
|
|
|
|
|
|
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
|
"""This function converts the degree range to the step range for indicating motors rotation.
|
|
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
|
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
|
"""
|
|
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
|
steps = degrees / 180 * np.array(resolutions) / 2
|
|
steps = steps.astype(int)
|
|
return steps
|
|
|
|
|
|
def convert_to_bytes(value, bytes, mock=False):
|
|
if mock:
|
|
return value
|
|
|
|
import dynamixel_sdk as dxl
|
|
|
|
# Note: No need to convert back into unsigned int, since this byte preprocessing
|
|
# already handles it for us.
|
|
if bytes == 1:
|
|
data = [
|
|
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
|
]
|
|
elif bytes == 2:
|
|
data = [
|
|
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
|
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
|
]
|
|
elif bytes == 4:
|
|
data = [
|
|
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
|
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
|
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
|
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
|
]
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
|
f"{bytes} is provided instead."
|
|
)
|
|
return data
|
|
|
|
|
|
def get_group_sync_key(data_name, motor_names):
|
|
group_key = f"{data_name}_" + "_".join(motor_names)
|
|
return group_key
|
|
|
|
|
|
def get_result_name(fn_name, data_name, motor_names):
|
|
group_key = get_group_sync_key(data_name, motor_names)
|
|
rslt_name = f"{fn_name}_{group_key}"
|
|
return rslt_name
|
|
|
|
|
|
def get_queue_name(fn_name, data_name, motor_names):
|
|
group_key = get_group_sync_key(data_name, motor_names)
|
|
queue_name = f"{fn_name}_{group_key}"
|
|
return queue_name
|
|
|
|
|
|
def get_log_name(var_name, fn_name, data_name, motor_names):
|
|
group_key = get_group_sync_key(data_name, motor_names)
|
|
log_name = f"{var_name}_{fn_name}_{group_key}"
|
|
return log_name
|
|
|
|
|
|
def assert_same_address(model_ctrl_table, motor_models, data_name):
|
|
all_addr = []
|
|
all_bytes = []
|
|
for model in motor_models:
|
|
addr, bytes = model_ctrl_table[model][data_name]
|
|
all_addr.append(addr)
|
|
all_bytes.append(bytes)
|
|
|
|
if len(set(all_addr)) != 1:
|
|
raise NotImplementedError(
|
|
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
|
|
)
|
|
|
|
if len(set(all_bytes)) != 1:
|
|
raise NotImplementedError(
|
|
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
|
|
)
|
|
|
|
|
|
class TorqueMode(enum.Enum):
|
|
ENABLED = 1
|
|
DISABLED = 0
|
|
|
|
|
|
class DriveMode(enum.Enum):
|
|
NON_INVERTED = 0
|
|
INVERTED = 1
|
|
|
|
|
|
class CalibrationMode(enum.Enum):
|
|
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
|
DEGREE = 0
|
|
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
|
LINEAR = 1
|
|
|
|
|
|
class JointOutOfRangeError(Exception):
|
|
def __init__(self, message="Joint is out of range"):
|
|
self.message = message
|
|
super().__init__(self.message)
|
|
|
|
|
|
class DynamixelMotorsBus:
|
|
"""
|
|
The DynamixelMotorsBus class allows to efficiently read and write to the attached motors. It relies on
|
|
the python dynamixel sdk to communicate with the motors. For more info, see the [Dynamixel SDK Documentation](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
|
|
|
|
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
|
To find the port, you can run our utility script:
|
|
```bash
|
|
python lerobot/scripts/find_motors_bus_port.py
|
|
>>> Finding all available ports for the MotorBus.
|
|
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
|
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
|
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
|
|
>>> Reconnect the usb cable.
|
|
```
|
|
|
|
Example of usage for 1 motor connected to the bus:
|
|
```python
|
|
motor_name = "gripper"
|
|
motor_index = 6
|
|
motor_model = "xl330-m288"
|
|
|
|
config = DynamixelMotorsBusConfig(
|
|
port="/dev/tty.usbmodem575E0031751",
|
|
motors={motor_name: (motor_index, motor_model)},
|
|
)
|
|
motors_bus = DynamixelMotorsBus(config)
|
|
motors_bus.connect()
|
|
|
|
position = motors_bus.read("Present_Position")
|
|
|
|
# move from a few motor steps as an example
|
|
few_steps = 30
|
|
motors_bus.write("Goal_Position", position + few_steps)
|
|
|
|
# when done, consider disconnecting
|
|
motors_bus.disconnect()
|
|
```
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: DynamixelMotorsBusConfig,
|
|
):
|
|
self.port = config.port
|
|
self.motors = config.motors
|
|
self.mock = config.mock
|
|
|
|
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
|
self.model_resolution = deepcopy(MODEL_RESOLUTION)
|
|
|
|
self.port_handler = None
|
|
self.packet_handler = None
|
|
self.calibration = None
|
|
self.is_connected = False
|
|
self.group_readers = {}
|
|
self.group_writers = {}
|
|
self.logs = {}
|
|
|
|
def connect(self):
|
|
if self.is_connected:
|
|
raise RobotDeviceAlreadyConnectedError(
|
|
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
|
|
)
|
|
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
self.port_handler = dxl.PortHandler(self.port)
|
|
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
|
|
|
try:
|
|
if not self.port_handler.openPort():
|
|
raise OSError(f"Failed to open port '{self.port}'.")
|
|
except Exception:
|
|
traceback.print_exc()
|
|
print(
|
|
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
|
)
|
|
raise
|
|
|
|
# Allow to read and write
|
|
self.is_connected = True
|
|
|
|
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
|
|
|
def reconnect(self):
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
self.port_handler = dxl.PortHandler(self.port)
|
|
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
|
|
|
if not self.port_handler.openPort():
|
|
raise OSError(f"Failed to open port '{self.port}'.")
|
|
|
|
self.is_connected = True
|
|
|
|
def are_motors_configured(self):
|
|
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
|
|
# a ConnectionError will be raised anyway.
|
|
try:
|
|
return (self.motor_indices == self.read("ID")).all()
|
|
except ConnectionError as e:
|
|
print(e)
|
|
return False
|
|
|
|
def find_motor_indices(self, possible_ids=None, num_retry=2):
|
|
if possible_ids is None:
|
|
possible_ids = range(MAX_ID_RANGE)
|
|
|
|
indices = []
|
|
for idx in tqdm.tqdm(possible_ids):
|
|
try:
|
|
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
|
except ConnectionError:
|
|
continue
|
|
|
|
if idx != present_idx:
|
|
# sanity check
|
|
raise OSError(
|
|
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
|
|
)
|
|
indices.append(idx)
|
|
|
|
return indices
|
|
|
|
def set_bus_baudrate(self, baudrate):
|
|
present_bus_baudrate = self.port_handler.getBaudRate()
|
|
if present_bus_baudrate != baudrate:
|
|
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
|
self.port_handler.setBaudRate(baudrate)
|
|
|
|
if self.port_handler.getBaudRate() != baudrate:
|
|
raise OSError("Failed to write bus baud rate.")
|
|
|
|
@property
|
|
def motor_names(self) -> list[str]:
|
|
return list(self.motors.keys())
|
|
|
|
@property
|
|
def motor_models(self) -> list[str]:
|
|
return [model for _, model in self.motors.values()]
|
|
|
|
@property
|
|
def motor_indices(self) -> list[int]:
|
|
return [idx for idx, _ in self.motors.values()]
|
|
|
|
def set_calibration(self, calibration: dict[str, list]):
|
|
self.calibration = calibration
|
|
|
|
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
|
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
|
|
|
|
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
|
"""
|
|
try:
|
|
values = self.apply_calibration(values, motor_names)
|
|
except JointOutOfRangeError as e:
|
|
print(e)
|
|
self.autocorrect_calibration(values, motor_names)
|
|
values = self.apply_calibration(values, motor_names)
|
|
return values
|
|
|
|
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
|
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
|
a "zero position" at 0 degree.
|
|
|
|
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
|
|
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
|
|
|
|
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
|
|
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
|
|
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
|
|
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
|
|
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
|
|
in the centered nominal degree range ]-180, 180[.
|
|
"""
|
|
if motor_names is None:
|
|
motor_names = self.motor_names
|
|
|
|
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
|
values = values.astype(np.float32)
|
|
|
|
for i, name in enumerate(motor_names):
|
|
calib_idx = self.calibration["motor_names"].index(name)
|
|
calib_mode = self.calibration["calib_mode"][calib_idx]
|
|
|
|
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
|
drive_mode = self.calibration["drive_mode"][calib_idx]
|
|
homing_offset = self.calibration["homing_offset"][calib_idx]
|
|
_, model = self.motors[name]
|
|
resolution = self.model_resolution[model]
|
|
|
|
# Update direction of rotation of the motor to match between leader and follower.
|
|
# In fact, the motor of the leader for a given joint can be assembled in an
|
|
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
|
if drive_mode:
|
|
values[i] *= -1
|
|
|
|
# Convert from range [-2**31, 2**31] to
|
|
# nominal range [-resolution//2, resolution//2] (e.g. [-2048, 2048])
|
|
values[i] += homing_offset
|
|
|
|
# Convert from range [-resolution//2, resolution//2] to
|
|
# universal float32 centered degree range [-180, 180]
|
|
# (e.g. 2048 / (4096 // 2) * 180 = 180)
|
|
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
|
|
|
|
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
|
|
raise JointOutOfRangeError(
|
|
f"Wrong motor position range detected for {name}. "
|
|
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
|
|
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
|
|
f"but present value is {values[i]} degree. "
|
|
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
|
|
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
|
)
|
|
|
|
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
|
start_pos = self.calibration["start_pos"][calib_idx]
|
|
end_pos = self.calibration["end_pos"][calib_idx]
|
|
|
|
# Rescale the present position to a nominal range [0, 100] %,
|
|
# useful for joints with linear motions like Aloha gripper
|
|
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
|
|
|
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
|
|
raise JointOutOfRangeError(
|
|
f"Wrong motor position range detected for {name}. "
|
|
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
|
|
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
|
|
f"but present value is {values[i]} %. "
|
|
"This might be due to a cable connection issue creating an artificial jump in motor values. "
|
|
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
|
)
|
|
|
|
return values
|
|
|
|
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
|
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
|
|
|
Some motors might have values outside of expected maximum bounds after calibration.
|
|
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
|
|
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
|
|
|
|
Known issues:
|
|
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
|
|
#2: Motor internal homing offset is shifted by a full turn, caused by using default calibration (e.g Aloha).
|
|
#3: motor internal homing offset is shifted by less or more than a full turn, caused by using default calibration
|
|
or by human error during manual calibration.
|
|
|
|
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
|
|
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
|
|
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
|
|
|
|
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
|
"""
|
|
if motor_names is None:
|
|
motor_names = self.motor_names
|
|
|
|
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
|
values = values.astype(np.float32)
|
|
|
|
for i, name in enumerate(motor_names):
|
|
calib_idx = self.calibration["motor_names"].index(name)
|
|
calib_mode = self.calibration["calib_mode"][calib_idx]
|
|
|
|
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
|
drive_mode = self.calibration["drive_mode"][calib_idx]
|
|
homing_offset = self.calibration["homing_offset"][calib_idx]
|
|
_, model = self.motors[name]
|
|
resolution = self.model_resolution[model]
|
|
|
|
# Update direction of rotation of the motor to match between leader and follower.
|
|
# In fact, the motor of the leader for a given joint can be assembled in an
|
|
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
|
if drive_mode:
|
|
values[i] *= -1
|
|
|
|
# Convert from initial range to range [-180, 180] degrees
|
|
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
|
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
|
|
|
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
|
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
|
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
|
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
|
|
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
|
|
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
|
|
|
|
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
|
start_pos = self.calibration["start_pos"][calib_idx]
|
|
end_pos = self.calibration["end_pos"][calib_idx]
|
|
|
|
# Convert from initial range to range [0, 100] in %
|
|
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
|
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
|
|
|
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
|
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
|
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
|
|
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
|
|
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
|
|
low_factor = (start_pos - values[i]) / resolution
|
|
upp_factor = (end_pos - values[i]) / resolution
|
|
|
|
if not in_range:
|
|
# Get first integer between the two bounds
|
|
if low_factor < upp_factor:
|
|
factor = math.ceil(low_factor)
|
|
|
|
if factor > upp_factor:
|
|
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
|
else:
|
|
factor = math.ceil(upp_factor)
|
|
|
|
if factor > low_factor:
|
|
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
|
|
|
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
|
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
|
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
|
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
|
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
|
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
|
|
|
logging.warning(
|
|
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
|
f"from '{out_of_range_str}' to '{in_range_str}'."
|
|
)
|
|
|
|
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
|
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
|
|
|
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
|
"""Inverse of `apply_calibration`."""
|
|
if motor_names is None:
|
|
motor_names = self.motor_names
|
|
|
|
for i, name in enumerate(motor_names):
|
|
calib_idx = self.calibration["motor_names"].index(name)
|
|
calib_mode = self.calibration["calib_mode"][calib_idx]
|
|
|
|
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
|
drive_mode = self.calibration["drive_mode"][calib_idx]
|
|
homing_offset = self.calibration["homing_offset"][calib_idx]
|
|
_, model = self.motors[name]
|
|
resolution = self.model_resolution[model]
|
|
|
|
# Convert from nominal 0-centered degree range [-180, 180] to
|
|
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
|
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
|
|
|
# Subtract the homing offsets to come back to actual motor range of values
|
|
# which can be arbitrary.
|
|
values[i] -= homing_offset
|
|
|
|
# Remove drive mode, which is the rotation direction of the motor, to come back to
|
|
# actual motor rotation direction which can be arbitrary.
|
|
if drive_mode:
|
|
values[i] *= -1
|
|
|
|
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
|
start_pos = self.calibration["start_pos"][calib_idx]
|
|
end_pos = self.calibration["end_pos"][calib_idx]
|
|
|
|
# Convert from nominal lnear range of [0, 100] % to
|
|
# actual motor range of values which can be arbitrary.
|
|
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
|
|
|
|
values = np.round(values).astype(np.int32)
|
|
return values
|
|
|
|
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
return_list = True
|
|
if not isinstance(motor_ids, list):
|
|
return_list = False
|
|
motor_ids = [motor_ids]
|
|
|
|
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
|
|
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
|
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
|
for idx in motor_ids:
|
|
group.addParam(idx)
|
|
|
|
for _ in range(num_retry):
|
|
comm = group.txRxPacket()
|
|
if comm == dxl.COMM_SUCCESS:
|
|
break
|
|
|
|
if comm != dxl.COMM_SUCCESS:
|
|
raise ConnectionError(
|
|
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
|
f"{self.packet_handler.getTxRxResult(comm)}"
|
|
)
|
|
|
|
values = []
|
|
for idx in motor_ids:
|
|
value = group.getData(idx, addr, bytes)
|
|
values.append(value)
|
|
|
|
if return_list:
|
|
return values
|
|
else:
|
|
return values[0]
|
|
|
|
def read(self, data_name, motor_names: str | list[str] | None = None):
|
|
if not self.is_connected:
|
|
raise RobotDeviceNotConnectedError(
|
|
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
|
)
|
|
|
|
start_time = time.perf_counter()
|
|
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
if motor_names is None:
|
|
motor_names = self.motor_names
|
|
|
|
if isinstance(motor_names, str):
|
|
motor_names = [motor_names]
|
|
|
|
motor_ids = []
|
|
models = []
|
|
for name in motor_names:
|
|
motor_idx, model = self.motors[name]
|
|
motor_ids.append(motor_idx)
|
|
models.append(model)
|
|
|
|
assert_same_address(self.model_ctrl_table, models, data_name)
|
|
addr, bytes = self.model_ctrl_table[model][data_name]
|
|
group_key = get_group_sync_key(data_name, motor_names)
|
|
|
|
if data_name not in self.group_readers:
|
|
# create new group reader
|
|
self.group_readers[group_key] = dxl.GroupSyncRead(
|
|
self.port_handler, self.packet_handler, addr, bytes
|
|
)
|
|
for idx in motor_ids:
|
|
self.group_readers[group_key].addParam(idx)
|
|
|
|
for _ in range(NUM_READ_RETRY):
|
|
comm = self.group_readers[group_key].txRxPacket()
|
|
if comm == dxl.COMM_SUCCESS:
|
|
break
|
|
|
|
if comm != dxl.COMM_SUCCESS:
|
|
raise ConnectionError(
|
|
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
|
f"{self.packet_handler.getTxRxResult(comm)}"
|
|
)
|
|
|
|
values = []
|
|
for idx in motor_ids:
|
|
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
|
values.append(value)
|
|
|
|
values = np.array(values)
|
|
|
|
# Convert to signed int to use range [-2048, 2048] for our motor positions.
|
|
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
|
values = values.astype(np.int32)
|
|
|
|
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
|
values = self.apply_calibration_autocorrect(values, motor_names)
|
|
|
|
# log the number of seconds it took to read the data from the motors
|
|
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
|
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
|
|
|
# log the utc time at which the data was received
|
|
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
|
|
self.logs[ts_utc_name] = capture_timestamp_utc()
|
|
|
|
return values
|
|
|
|
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
if not isinstance(motor_ids, list):
|
|
motor_ids = [motor_ids]
|
|
if not isinstance(values, list):
|
|
values = [values]
|
|
|
|
assert_same_address(self.model_ctrl_table, motor_models, data_name)
|
|
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
|
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
|
for idx, value in zip(motor_ids, values, strict=True):
|
|
data = convert_to_bytes(value, bytes, self.mock)
|
|
group.addParam(idx, data)
|
|
|
|
for _ in range(num_retry):
|
|
comm = group.txPacket()
|
|
if comm == dxl.COMM_SUCCESS:
|
|
break
|
|
|
|
if comm != dxl.COMM_SUCCESS:
|
|
raise ConnectionError(
|
|
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
|
f"{self.packet_handler.getTxRxResult(comm)}"
|
|
)
|
|
|
|
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
|
if not self.is_connected:
|
|
raise RobotDeviceNotConnectedError(
|
|
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
|
)
|
|
|
|
start_time = time.perf_counter()
|
|
|
|
if self.mock:
|
|
import tests.motors.mock_dynamixel_sdk as dxl
|
|
else:
|
|
import dynamixel_sdk as dxl
|
|
|
|
if motor_names is None:
|
|
motor_names = self.motor_names
|
|
|
|
if isinstance(motor_names, str):
|
|
motor_names = [motor_names]
|
|
|
|
if isinstance(values, (int, float, np.integer)):
|
|
values = [int(values)] * len(motor_names)
|
|
|
|
values = np.array(values)
|
|
|
|
motor_ids = []
|
|
models = []
|
|
for name in motor_names:
|
|
motor_idx, model = self.motors[name]
|
|
motor_ids.append(motor_idx)
|
|
models.append(model)
|
|
|
|
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
|
values = self.revert_calibration(values, motor_names)
|
|
|
|
values = values.tolist()
|
|
|
|
assert_same_address(self.model_ctrl_table, models, data_name)
|
|
addr, bytes = self.model_ctrl_table[model][data_name]
|
|
group_key = get_group_sync_key(data_name, motor_names)
|
|
|
|
init_group = data_name not in self.group_readers
|
|
if init_group:
|
|
self.group_writers[group_key] = dxl.GroupSyncWrite(
|
|
self.port_handler, self.packet_handler, addr, bytes
|
|
)
|
|
|
|
for idx, value in zip(motor_ids, values, strict=True):
|
|
data = convert_to_bytes(value, bytes, self.mock)
|
|
if init_group:
|
|
self.group_writers[group_key].addParam(idx, data)
|
|
else:
|
|
self.group_writers[group_key].changeParam(idx, data)
|
|
|
|
comm = self.group_writers[group_key].txPacket()
|
|
if comm != dxl.COMM_SUCCESS:
|
|
raise ConnectionError(
|
|
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
|
f"{self.packet_handler.getTxRxResult(comm)}"
|
|
)
|
|
|
|
# log the number of seconds it took to write the data to the motors
|
|
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
|
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
|
|
|
# TODO(rcadene): should we log the time before sending the write command?
|
|
# log the utc time when the write has been completed
|
|
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
|
|
self.logs[ts_utc_name] = capture_timestamp_utc()
|
|
|
|
def disconnect(self):
|
|
if not self.is_connected:
|
|
raise RobotDeviceNotConnectedError(
|
|
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
|
|
)
|
|
|
|
if self.port_handler is not None:
|
|
self.port_handler.closePort()
|
|
self.port_handler = None
|
|
|
|
self.packet_handler = None
|
|
self.group_readers = {}
|
|
self.group_writers = {}
|
|
self.is_connected = False
|
|
|
|
def __del__(self):
|
|
if getattr(self, "is_connected", False):
|
|
self.disconnect()
|