157 lines
5.1 KiB
Python
157 lines
5.1 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import abc
|
|
from dataclasses import dataclass, field
|
|
|
|
import draccus
|
|
|
|
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
|
|
from lerobot.configs.types import FeatureType, PolicyFeature
|
|
|
|
|
|
@dataclass
|
|
class EnvConfig(draccus.ChoiceRegistry, abc.ABC):
|
|
task: str | None = None
|
|
fps: int = 30
|
|
features: dict[str, PolicyFeature] = field(default_factory=dict)
|
|
features_map: dict[str, str] = field(default_factory=dict)
|
|
|
|
@property
|
|
def type(self) -> str:
|
|
return self.get_choice_name(self.__class__)
|
|
|
|
@abc.abstractproperty
|
|
def gym_kwargs(self) -> dict:
|
|
raise NotImplementedError()
|
|
|
|
|
|
@EnvConfig.register_subclass("aloha")
|
|
@dataclass
|
|
class AlohaEnv(EnvConfig):
|
|
task: str = "AlohaInsertion-v0"
|
|
fps: int = 50
|
|
episode_length: int = 400
|
|
obs_type: str = "pixels_agent_pos"
|
|
render_mode: str = "rgb_array"
|
|
features: dict[str, PolicyFeature] = field(
|
|
default_factory=lambda: {
|
|
"action": PolicyFeature(type=FeatureType.ACTION, shape=(14,)),
|
|
}
|
|
)
|
|
features_map: dict[str, str] = field(
|
|
default_factory=lambda: {
|
|
"action": ACTION,
|
|
"agent_pos": OBS_ROBOT,
|
|
"top": f"{OBS_IMAGE}.top",
|
|
"pixels/top": f"{OBS_IMAGES}.top",
|
|
}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.obs_type == "pixels":
|
|
self.features["top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
|
|
elif self.obs_type == "pixels_agent_pos":
|
|
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(14,))
|
|
self.features["pixels/top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
|
|
|
|
@property
|
|
def gym_kwargs(self) -> dict:
|
|
return {
|
|
"obs_type": self.obs_type,
|
|
"render_mode": self.render_mode,
|
|
"max_episode_steps": self.episode_length,
|
|
}
|
|
|
|
|
|
@EnvConfig.register_subclass("pusht")
|
|
@dataclass
|
|
class PushtEnv(EnvConfig):
|
|
task: str = "PushT-v0"
|
|
fps: int = 10
|
|
episode_length: int = 300
|
|
obs_type: str = "pixels_agent_pos"
|
|
render_mode: str = "rgb_array"
|
|
visualization_width: int = 384
|
|
visualization_height: int = 384
|
|
features: dict[str, PolicyFeature] = field(
|
|
default_factory=lambda: {
|
|
"action": PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
|
|
"agent_pos": PolicyFeature(type=FeatureType.STATE, shape=(2,)),
|
|
}
|
|
)
|
|
features_map: dict[str, str] = field(
|
|
default_factory=lambda: {
|
|
"action": ACTION,
|
|
"agent_pos": OBS_ROBOT,
|
|
"environment_state": OBS_ENV,
|
|
"pixels": OBS_IMAGE,
|
|
}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.obs_type == "pixels_agent_pos":
|
|
self.features["pixels"] = PolicyFeature(type=FeatureType.VISUAL, shape=(384, 384, 3))
|
|
elif self.obs_type == "environment_state_agent_pos":
|
|
self.features["environment_state"] = PolicyFeature(type=FeatureType.ENV, shape=(16,))
|
|
|
|
@property
|
|
def gym_kwargs(self) -> dict:
|
|
return {
|
|
"obs_type": self.obs_type,
|
|
"render_mode": self.render_mode,
|
|
"visualization_width": self.visualization_width,
|
|
"visualization_height": self.visualization_height,
|
|
"max_episode_steps": self.episode_length,
|
|
}
|
|
|
|
|
|
@EnvConfig.register_subclass("xarm")
|
|
@dataclass
|
|
class XarmEnv(EnvConfig):
|
|
task: str = "XarmLift-v0"
|
|
fps: int = 15
|
|
episode_length: int = 200
|
|
obs_type: str = "pixels_agent_pos"
|
|
render_mode: str = "rgb_array"
|
|
visualization_width: int = 384
|
|
visualization_height: int = 384
|
|
features: dict[str, PolicyFeature] = field(
|
|
default_factory=lambda: {
|
|
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
|
|
"pixels": PolicyFeature(type=FeatureType.VISUAL, shape=(84, 84, 3)),
|
|
}
|
|
)
|
|
features_map: dict[str, str] = field(
|
|
default_factory=lambda: {
|
|
"action": ACTION,
|
|
"agent_pos": OBS_ROBOT,
|
|
"pixels": OBS_IMAGE,
|
|
}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.obs_type == "pixels_agent_pos":
|
|
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(4,))
|
|
|
|
@property
|
|
def gym_kwargs(self) -> dict:
|
|
return {
|
|
"obs_type": self.obs_type,
|
|
"render_mode": self.render_mode,
|
|
"visualization_width": self.visualization_width,
|
|
"visualization_height": self.visualization_height,
|
|
"max_episode_steps": self.episode_length,
|
|
}
|