77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
from pathlib import Path
|
|
|
|
import torch
|
|
from datasets import load_dataset, load_from_disk
|
|
|
|
from lerobot.common.datasets.utils import load_previous_and_future_frames
|
|
|
|
|
|
class XarmDataset(torch.utils.data.Dataset):
|
|
"""
|
|
https://huggingface.co/datasets/lerobot/xarm_lift_medium
|
|
"""
|
|
|
|
# Copied from lerobot/__init__.py
|
|
available_datasets = ["xarm_lift_medium"]
|
|
fps = 15
|
|
image_keys = ["observation.image"]
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_id: str = "xarm_lift_medium",
|
|
version: str | None = "v1.0",
|
|
root: Path | None = None,
|
|
split: str = "train",
|
|
transform: callable = None,
|
|
delta_timestamps: dict[list[float]] | None = None,
|
|
):
|
|
super().__init__()
|
|
self.dataset_id = dataset_id
|
|
self.version = version
|
|
self.root = root
|
|
self.split = split
|
|
self.transform = transform
|
|
self.delta_timestamps = delta_timestamps
|
|
if self.root is not None:
|
|
self.hf_dataset = load_from_disk(Path(self.root) / self.dataset_id / self.split)
|
|
else:
|
|
self.hf_dataset = load_dataset(
|
|
f"lerobot/{self.dataset_id}", revision=self.version, split=self.split
|
|
)
|
|
self.hf_dataset = self.hf_dataset.with_format("torch")
|
|
|
|
@property
|
|
def num_samples(self) -> int:
|
|
return len(self.hf_dataset)
|
|
|
|
@property
|
|
def num_episodes(self) -> int:
|
|
return len(self.hf_dataset.unique("episode_id"))
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def __getitem__(self, idx):
|
|
item = self.hf_dataset[idx]
|
|
|
|
if self.delta_timestamps is not None:
|
|
item = load_previous_and_future_frames(
|
|
item,
|
|
self.hf_dataset,
|
|
self.delta_timestamps,
|
|
)
|
|
|
|
# convert images from channel last (PIL) to channel first (pytorch)
|
|
for key in self.image_keys:
|
|
if item[key].ndim == 3:
|
|
item[key] = item[key].permute((2, 0, 1)) # h w c -> c h w
|
|
elif item[key].ndim == 4:
|
|
item[key] = item[key].permute((0, 3, 1, 2)) # t h w c -> t c h w
|
|
else:
|
|
raise ValueError(item[key].ndim)
|
|
|
|
if self.transform is not None:
|
|
item = self.transform(item)
|
|
|
|
return item
|