92 lines
2.9 KiB
Python
92 lines
2.9 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import Any
|
|
|
|
|
|
@dataclass
|
|
class SACConfig:
|
|
input_shapes: dict[str, list[int]] = field(
|
|
default_factory=lambda: {
|
|
"observation.image": [3, 84, 84],
|
|
"observation.state": [4],
|
|
}
|
|
)
|
|
output_shapes: dict[str, list[int]] = field(
|
|
default_factory=lambda: {
|
|
"action": [2],
|
|
}
|
|
)
|
|
input_normalization_modes: dict[str, str] = field(
|
|
default_factory=lambda: {
|
|
"observation.image": "mean_std",
|
|
"observation.state": "min_max",
|
|
"observation.environment_state": "min_max",
|
|
}
|
|
)
|
|
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
|
|
output_normalization_params: dict[str, dict[str, list[float]]] = field(
|
|
default_factory=lambda: {
|
|
"action": {"min": [-1, -1], "max": [1, 1]},
|
|
}
|
|
)
|
|
# TODO: Move it outside of the config
|
|
actor_learner_config: dict[str, str | int] = field(
|
|
default_factory=lambda: {
|
|
"actor_ip": "127.0.0.1",
|
|
"port": 50051,
|
|
"learner_ip": "127.0.0.1",
|
|
}
|
|
)
|
|
camera_number: int = 1
|
|
# Add type annotations for these fields:
|
|
image_encoder_hidden_dim: int = 32
|
|
shared_encoder: bool = False
|
|
discount: float = 0.99
|
|
temperature_init: float = 1.0
|
|
num_critics: int = 2
|
|
num_subsample_critics: int | None = None
|
|
critic_lr: float = 3e-4
|
|
actor_lr: float = 3e-4
|
|
temperature_lr: float = 3e-4
|
|
critic_target_update_weight: float = 0.005
|
|
utd_ratio: int = 1 # If you want enable utd_ratio, you need to set it to >1
|
|
state_encoder_hidden_dim: int = 256
|
|
latent_dim: int = 256
|
|
target_entropy: float | None = None
|
|
use_backup_entropy: bool = True
|
|
critic_network_kwargs: dict[str, Any] = field(
|
|
default_factory=lambda: {
|
|
"hidden_dims": [256, 256],
|
|
"activate_final": True,
|
|
}
|
|
)
|
|
actor_network_kwargs: dict[str, Any] = field(
|
|
default_factory=lambda: {
|
|
"hidden_dims": [256, 256],
|
|
"activate_final": True,
|
|
}
|
|
)
|
|
policy_kwargs: dict[str, Any] = field(
|
|
default_factory=lambda: {
|
|
"use_tanh_squash": True,
|
|
"log_std_min": -5,
|
|
"log_std_max": 2,
|
|
}
|
|
)
|