lerobot/lerobot/common/datasets/transforms.py

198 lines
8.0 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from typing import Any, Callable, Dict, Sequence
import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import Transform
from torchvision.transforms.v2 import functional as F # noqa: N812
class RandomSubsetApply(Transform):
"""Apply a random subset of N transformations from a list of transformations.
Args:
transforms: list of transformations.
p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
have the same probability.
n_subset: number of transformations to apply. If ``None``, all transforms are applied.
Must be in [1, len(transforms)].
random_order: apply transformations in a random order.
"""
def __init__(
self,
transforms: Sequence[Callable],
p: list[float] | None = None,
n_subset: int | None = None,
random_order: bool = False,
) -> None:
super().__init__()
if not isinstance(transforms, Sequence):
raise TypeError("Argument transforms should be a sequence of callables")
if p is None:
p = [1] * len(transforms)
elif len(p) != len(transforms):
raise ValueError(
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
)
if n_subset is None:
n_subset = len(transforms)
elif not isinstance(n_subset, int):
raise TypeError("n_subset should be an int or None")
elif not (1 <= n_subset <= len(transforms)):
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
self.transforms = transforms
total = sum(p)
self.p = [prob / total for prob in p]
self.n_subset = n_subset
self.random_order = random_order
def forward(self, *inputs: Any) -> Any:
needs_unpacking = len(inputs) > 1
selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
if not self.random_order:
selected_indices = selected_indices.sort().values
selected_transforms = [self.transforms[i] for i in selected_indices]
for transform in selected_transforms:
outputs = transform(*inputs)
inputs = outputs if needs_unpacking else (outputs,)
return outputs
def extra_repr(self) -> str:
return (
f"transforms={self.transforms}, "
f"p={self.p}, "
f"n_subset={self.n_subset}, "
f"random_order={self.random_order}"
)
class SharpnessJitter(Transform):
"""Randomly change the sharpness of an image or video.
Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
augmentations as a result.
A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
by a factor of 2.
If the input is a :class:`torch.Tensor`,
it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
Args:
sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
[max(0, 1 - sharpness), 1 + sharpness] or the given
[min, max]. Should be non negative numbers.
"""
def __init__(self, sharpness: float | Sequence[float]) -> None:
super().__init__()
self.sharpness = self._check_input(sharpness)
def _check_input(self, sharpness):
if isinstance(sharpness, (int, float)):
if sharpness < 0:
raise ValueError("If sharpness is a single number, it must be non negative.")
sharpness = [1.0 - sharpness, 1.0 + sharpness]
sharpness[0] = max(sharpness[0], 0.0)
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
sharpness = [float(v) for v in sharpness]
else:
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])
def _generate_value(self, left: float, right: float) -> float:
return torch.empty(1).uniform_(left, right).item()
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
sharpness_factor = self._generate_value(self.sharpness[0], self.sharpness[1])
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
def get_image_transforms(
brightness_weight: float = 1.0,
brightness_min_max: tuple[float, float] | None = None,
contrast_weight: float = 1.0,
contrast_min_max: tuple[float, float] | None = None,
saturation_weight: float = 1.0,
saturation_min_max: tuple[float, float] | None = None,
hue_weight: float = 1.0,
hue_min_max: tuple[float, float] | None = None,
sharpness_weight: float = 1.0,
sharpness_min_max: tuple[float, float] | None = None,
max_num_transforms: int | None = None,
random_order: bool = False,
):
def check_value(name, weight, min_max):
if min_max is not None:
if len(min_max) != 2:
raise ValueError(
f"`{name}_min_max` is expected to be a tuple of 2 dimensions, but {min_max} provided."
)
if weight < 0.0:
raise ValueError(
f"`{name}_weight` is expected to be 0 or positive, but is negative ({weight})."
)
check_value("brightness", brightness_weight, brightness_min_max)
check_value("contrast", contrast_weight, contrast_min_max)
check_value("saturation", saturation_weight, saturation_min_max)
check_value("hue", hue_weight, hue_min_max)
check_value("sharpness", sharpness_weight, sharpness_min_max)
weights = []
transforms = []
if brightness_min_max is not None and brightness_weight > 0.0:
weights.append(brightness_weight)
transforms.append(v2.ColorJitter(brightness=brightness_min_max))
if contrast_min_max is not None and contrast_weight > 0.0:
weights.append(contrast_weight)
transforms.append(v2.ColorJitter(contrast=contrast_min_max))
if saturation_min_max is not None and saturation_weight > 0.0:
weights.append(saturation_weight)
transforms.append(v2.ColorJitter(saturation=saturation_min_max))
if hue_min_max is not None and hue_weight > 0.0:
weights.append(hue_weight)
transforms.append(v2.ColorJitter(hue=hue_min_max))
if sharpness_min_max is not None and sharpness_weight > 0.0:
weights.append(sharpness_weight)
transforms.append(SharpnessJitter(sharpness=sharpness_min_max))
n_subset = len(transforms)
if max_num_transforms is not None:
n_subset = min(n_subset, max_num_transforms)
if n_subset == 0:
return v2.Identity()
else:
# TODO(rcadene, aliberts): add v2.ToDtype float16?
return RandomSubsetApply(transforms, p=weights, n_subset=n_subset, random_order=random_order)