lerobot/lerobot/common/policies/act/policy.py

217 lines
7.3 KiB
Python

import logging
import time
import torch
import torch.nn.functional as F # noqa: N812
import torchvision.transforms as transforms
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.act.detr_vae import build
from lerobot.common.utils import get_safe_torch_device
def build_act_model_and_optimizer(cfg):
model = build(cfg)
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": cfg.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
return model, optimizer
def kl_divergence(mu, logvar):
batch_size = mu.size(0)
assert batch_size != 0
if mu.data.ndimension() == 4:
mu = mu.view(mu.size(0), mu.size(1))
if logvar.data.ndimension() == 4:
logvar = logvar.view(logvar.size(0), logvar.size(1))
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
total_kld = klds.sum(1).mean(0, True)
dimension_wise_kld = klds.mean(0)
mean_kld = klds.mean(1).mean(0, True)
return total_kld, dimension_wise_kld, mean_kld
class ActionChunkingTransformerPolicy(AbstractPolicy):
name = "act"
def __init__(self, cfg, device, n_action_steps=1):
super().__init__(n_action_steps)
self.cfg = cfg
self.n_action_steps = n_action_steps
self.device = get_safe_torch_device(device)
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
self.kl_weight = self.cfg.kl_weight
logging.info(f"KL Weight {self.kl_weight}")
self.to(self.device)
def update(self, replay_buffer, step):
del step
start_time = time.time()
self.train()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
def process_batch(batch, horizon, num_slices):
# trajectory t = 64, horizon h = 16
# (t h) ... -> t h ...
batch = batch.reshape(num_slices, horizon)
image = batch["observation", "image", "top"]
image = image[:, 0] # first observation t=0
# batch, num_cam, channel, height, width
image = image.unsqueeze(1)
assert image.ndim == 5
image = image.float()
state = batch["observation", "state"]
state = state[:, 0] # first observation t=0
# batch, qpos_dim
assert state.ndim == 2
action = batch["action"]
# batch, seq, action_dim
assert action.ndim == 3
assert action.shape[1] == horizon
if self.cfg.n_obs_steps > 1:
raise NotImplementedError()
# # keep first n observations of the slice corresponding to t=[-1,0]
# image = image[:, : self.cfg.n_obs_steps]
# state = state[:, : self.cfg.n_obs_steps]
out = {
"obs": {
"image": image.to(self.device, non_blocking=True),
"agent_pos": state.to(self.device, non_blocking=True),
},
"action": action.to(self.device, non_blocking=True),
}
return out
batch = replay_buffer.sample(batch_size)
batch = process_batch(batch, self.cfg.horizon, num_slices)
data_s = time.time() - start_time
loss = self.compute_loss(batch)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.optimizer.step()
self.optimizer.zero_grad()
# self.lr_scheduler.step()
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
# "lr": self.lr_scheduler.get_last_lr()[0],
"lr": self.cfg.lr,
"data_s": data_s,
"update_s": time.time() - start_time,
}
return info
def save(self, fp):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
self.load_state_dict(d)
def compute_loss(self, batch):
loss_dict = self._forward(
qpos=batch["obs"]["agent_pos"],
image=batch["obs"]["image"],
actions=batch["action"],
)
loss = loss_dict["loss"]
return loss
@torch.no_grad()
def select_actions(self, observation, step_count):
if observation["image"].shape[0] != 1:
raise NotImplementedError("Batch size > 1 not handled")
# TODO(rcadene): remove unused step_count
del step_count
self.eval()
# TODO(rcadene): remove hack
# add 1 camera dimension
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
obs_dict = {
"image": observation["image", "top"],
"agent_pos": observation["state"],
}
action = self._forward(qpos=obs_dict["agent_pos"], image=obs_dict["image"])
if self.cfg.temporal_agg:
# TODO(rcadene): implement temporal aggregation
raise NotImplementedError()
# all_time_actions[[t], t:t+num_queries] = action
# actions_for_curr_step = all_time_actions[:, t]
# actions_populated = torch.all(actions_for_curr_step != 0, axis=1)
# actions_for_curr_step = actions_for_curr_step[actions_populated]
# k = 0.01
# exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
# exp_weights = exp_weights / exp_weights.sum()
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
# take first predicted action or n first actions
action = action[: self.n_action_steps]
return action
def _forward(self, qpos, image, actions=None, is_pad=None):
env_state = None
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
image = normalize(image)
is_training = actions is not None
if is_training: # training time
actions = actions[:, : self.model.num_queries]
if is_pad is not None:
is_pad = is_pad[:, : self.model.num_queries]
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
l1 = all_l1.mean() if is_pad is None else (all_l1 * ~is_pad.unsqueeze(-1)).mean()
loss_dict = {}
loss_dict["l1"] = l1
if self.cfg.vae:
total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar)
loss_dict["kl"] = total_kld[0]
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight
else:
loss_dict["loss"] = loss_dict["l1"]
return loss_dict
else:
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
return action