lerobot/lerobot/common/datasets/factory.py

91 lines
3.2 KiB
Python

import os
from pathlib import Path
import torch
from torchvision.transforms import v2
from lerobot.common.transforms import Prod
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
# to load a subset of our datasets for faster continuous integration.
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
def make_dataset(
cfg,
# set normalize=False to remove all transformations and keep images unnormalized in [0,255]
normalize=True,
stats_path=None,
):
if cfg.env.name == "simxarm":
from lerobot.common.datasets.simxarm import SimxarmDataset
clsfunc = SimxarmDataset
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtDataset
clsfunc = PushtDataset
elif cfg.env.name == "aloha":
from lerobot.common.datasets.aloha import AlohaDataset
clsfunc = AlohaDataset
else:
raise ValueError(cfg.env.name)
transforms = None
if normalize:
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max,
# min_max_from_spec
# stats = dataset.compute_or_load_stats() if stats_path is None else torch.load(stats_path)
stats = {}
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation.state"] = {}
stats["observation.state"]["min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation.state"]["max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action"] = {}
stats["action"]["min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action"]["max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
# normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
transforms = v2.Compose(
[
# TODO(rcadene): we need to do something about image_keys
Prod(in_keys=clsfunc.image_keys, prod=1 / 255.0),
# NormalizeTransform(
# stats,
# in_keys=[
# "observation.state",
# "action",
# ],
# mode=normalization_mode,
# ),
]
)
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): implement delta_timestamps in config
delta_timestamps = {
"observation.image": [-0.1, 0],
"observation.state": [-0.1, 0],
"action": [-0.1] + [i / clsfunc.fps for i in range(15)],
}
else:
delta_timestamps = None
dataset = clsfunc(
dataset_id=cfg.dataset_id,
root=DATA_DIR,
delta_timestamps=delta_timestamps,
transform=transforms,
)
return dataset