lerobot/lerobot/common/datasets/simxarm.py

130 lines
4.1 KiB
Python

import pickle
import zipfile
from pathlib import Path
from typing import Callable
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import (
Sampler,
)
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractDataset
def download():
raise NotImplementedError()
import gdown
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
download_path = "data.zip"
gdown.download(url, download_path, quiet=False)
print("Extracting...")
with zipfile.ZipFile(download_path, "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
Path(download_path).unlink()
class SimxarmDataset(AbstractDataset):
available_datasets = [
"xarm_lift_medium",
]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
dummy: bool = False,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
dummy=dummy,
)
def _download_and_preproc_obsolete(self):
# assert self.root is not None
# TODO(rcadene): finish download
# download()
dataset_path = self.root / f"{self.dataset_id}" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
total_frames = dataset_dict["actions"].shape[0]
idx0 = 0
idx1 = 0
episode_id = 0
for i in tqdm.tqdm(range(total_frames)):
idx1 += 1
if not dataset_dict["dones"][i]:
continue
num_frames = idx1 - idx0
image = torch.tensor(dataset_dict["observations"]["rgb"][idx0:idx1])
state = torch.tensor(dataset_dict["observations"]["state"][idx0:idx1])
next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][idx0:idx1])
next_state = torch.tensor(dataset_dict["next_observations"]["state"][idx0:idx1])
next_reward = torch.tensor(dataset_dict["rewards"][idx0:idx1])
next_done = torch.tensor(dataset_dict["dones"][idx0:idx1])
episode = TensorDict(
{
("observation", "image"): image,
("observation", "state"): state,
"action": torch.tensor(dataset_dict["actions"][idx0:idx1]),
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
("next", "observation", "image"): next_image,
("next", "observation", "state"): next_state,
("next", "reward"): next_reward,
("next", "done"): next_done,
},
batch_size=num_frames,
)
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = (
episode[0]
.expand(total_frames)
.memmap_like(self.root / f"{self.dataset_id}" / "replay_buffer")
)
td_data[idx0:idx1] = episode
episode_id += 1
idx0 = idx1
return TensorStorage(td_data.lock_())