lerobot/lerobot/common/policies/diffusion/model/tensor_utils.py

973 lines
30 KiB
Python

"""
A collection of utilities for working with nested tensor structures consisting
of numpy arrays and torch tensors.
"""
import collections
import numpy as np
import torch
def recursive_dict_list_tuple_apply(x, type_func_dict):
"""
Recursively apply functions to a nested dictionary or list or tuple, given a dictionary of
{data_type: function_to_apply}.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
type_func_dict (dict): a mapping from data types to the functions to be
applied for each data type.
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
assert list not in type_func_dict
assert tuple not in type_func_dict
assert dict not in type_func_dict
if isinstance(x, (dict, collections.OrderedDict)):
new_x = collections.OrderedDict() if isinstance(x, collections.OrderedDict) else {}
for k, v in x.items():
new_x[k] = recursive_dict_list_tuple_apply(v, type_func_dict)
return new_x
elif isinstance(x, (list, tuple)):
ret = [recursive_dict_list_tuple_apply(v, type_func_dict) for v in x]
if isinstance(x, tuple):
ret = tuple(ret)
return ret
else:
for t, f in type_func_dict.items():
if isinstance(x, t):
return f(x)
else:
raise NotImplementedError("Cannot handle data type %s" % str(type(x)))
def map_tensor(x, func):
"""
Apply function @func to torch.Tensor objects in a nested dictionary or
list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
func (function): function to apply to each tensor
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: func,
type(None): lambda x: x,
},
)
def map_ndarray(x, func):
"""
Apply function @func to np.ndarray objects in a nested dictionary or
list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
func (function): function to apply to each array
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
np.ndarray: func,
type(None): lambda x: x,
},
)
def map_tensor_ndarray(x, tensor_func, ndarray_func):
"""
Apply function @tensor_func to torch.Tensor objects and @ndarray_func to
np.ndarray objects in a nested dictionary or list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
tensor_func (function): function to apply to each tensor
ndarray_Func (function): function to apply to each array
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: tensor_func,
np.ndarray: ndarray_func,
type(None): lambda x: x,
},
)
def clone(x):
"""
Clones all torch tensors and numpy arrays in nested dictionary or list
or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.clone(),
np.ndarray: lambda x: x.copy(),
type(None): lambda x: x,
},
)
def detach(x):
"""
Detaches all torch tensors in nested dictionary or list
or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.detach(),
},
)
def to_batch(x):
"""
Introduces a leading batch dimension of 1 for all torch tensors and numpy
arrays in nested dictionary or list or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x[None, ...],
np.ndarray: lambda x: x[None, ...],
type(None): lambda x: x,
},
)
def to_sequence(x):
"""
Introduces a time dimension of 1 at dimension 1 for all torch tensors and numpy
arrays in nested dictionary or list or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x[:, None, ...],
np.ndarray: lambda x: x[:, None, ...],
type(None): lambda x: x,
},
)
def index_at_time(x, ind):
"""
Indexes all torch tensors and numpy arrays in dimension 1 with index @ind in
nested dictionary or list or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
ind (int): index
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x[:, ind, ...],
np.ndarray: lambda x: x[:, ind, ...],
type(None): lambda x: x,
},
)
def unsqueeze(x, dim):
"""
Adds dimension of size 1 at dimension @dim in all torch tensors and numpy arrays
in nested dictionary or list or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
dim (int): dimension
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.unsqueeze(dim=dim),
np.ndarray: lambda x: np.expand_dims(x, axis=dim),
type(None): lambda x: x,
},
)
def contiguous(x):
"""
Makes all torch tensors and numpy arrays contiguous in nested dictionary or
list or tuple and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.contiguous(),
np.ndarray: lambda x: np.ascontiguousarray(x),
type(None): lambda x: x,
},
)
def to_device(x, device):
"""
Sends all torch tensors in nested dictionary or list or tuple to device
@device, and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
device (torch.Device): device to send tensors to
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x, d=device: x.to(d),
type(None): lambda x: x,
},
)
def to_tensor(x):
"""
Converts all numpy arrays in nested dictionary or list or tuple to
torch tensors (and leaves existing torch Tensors as-is), and returns
a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x,
np.ndarray: lambda x: torch.from_numpy(x),
type(None): lambda x: x,
},
)
def to_numpy(x):
"""
Converts all torch tensors in nested dictionary or list or tuple to
numpy (and leaves existing numpy arrays as-is), and returns
a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
def f(tensor):
if tensor.is_cuda:
return tensor.detach().cpu().numpy()
else:
return tensor.detach().numpy()
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: f,
np.ndarray: lambda x: x,
type(None): lambda x: x,
},
)
def to_list(x):
"""
Converts all torch tensors and numpy arrays in nested dictionary or list
or tuple to a list, and returns a new nested structure. Useful for
json encoding.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
def f(tensor):
if tensor.is_cuda:
return tensor.detach().cpu().numpy().tolist()
else:
return tensor.detach().numpy().tolist()
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: f,
np.ndarray: lambda x: x.tolist(),
type(None): lambda x: x,
},
)
def to_float(x):
"""
Converts all torch tensors and numpy arrays in nested dictionary or list
or tuple to float type entries, and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.float(),
np.ndarray: lambda x: x.astype(np.float32),
type(None): lambda x: x,
},
)
def to_uint8(x):
"""
Converts all torch tensors and numpy arrays in nested dictionary or list
or tuple to uint8 type entries, and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.byte(),
np.ndarray: lambda x: x.astype(np.uint8),
type(None): lambda x: x,
},
)
def to_torch(x, device):
"""
Converts all numpy arrays and torch tensors in nested dictionary or list or tuple to
torch tensors on device @device and returns a new nested structure.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
device (torch.Device): device to send tensors to
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return to_device(to_float(to_tensor(x)), device)
def to_one_hot_single(tensor, num_class):
"""
Convert tensor to one-hot representation, assuming a certain number of total class labels.
Args:
tensor (torch.Tensor): tensor containing integer labels
num_class (int): number of classes
Returns:
x (torch.Tensor): tensor containing one-hot representation of labels
"""
x = torch.zeros(tensor.size() + (num_class,)).to(tensor.device)
x.scatter_(-1, tensor.unsqueeze(-1), 1)
return x
def to_one_hot(tensor, num_class):
"""
Convert all tensors in nested dictionary or list or tuple to one-hot representation,
assuming a certain number of total class labels.
Args:
tensor (dict or list or tuple): a possibly nested dictionary or list or tuple
num_class (int): number of classes
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return map_tensor(tensor, func=lambda x, nc=num_class: to_one_hot_single(x, nc))
def flatten_single(x, begin_axis=1):
"""
Flatten a tensor in all dimensions from @begin_axis onwards.
Args:
x (torch.Tensor): tensor to flatten
begin_axis (int): which axis to flatten from
Returns:
y (torch.Tensor): flattened tensor
"""
fixed_size = x.size()[:begin_axis]
_s = list(fixed_size) + [-1]
return x.reshape(*_s)
def flatten(x, begin_axis=1):
"""
Flatten all tensors in nested dictionary or list or tuple, from @begin_axis onwards.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
begin_axis (int): which axis to flatten from
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x, b=begin_axis: flatten_single(x, begin_axis=b),
},
)
def reshape_dimensions_single(x, begin_axis, end_axis, target_dims):
"""
Reshape selected dimensions in a tensor to a target dimension.
Args:
x (torch.Tensor): tensor to reshape
begin_axis (int): begin dimension
end_axis (int): end dimension
target_dims (tuple or list): target shape for the range of dimensions
(@begin_axis, @end_axis)
Returns:
y (torch.Tensor): reshaped tensor
"""
assert begin_axis <= end_axis
assert begin_axis >= 0
assert end_axis < len(x.shape)
assert isinstance(target_dims, (tuple, list))
s = x.shape
final_s = []
for i in range(len(s)):
if i == begin_axis:
final_s.extend(target_dims)
elif i < begin_axis or i > end_axis:
final_s.append(s[i])
return x.reshape(*final_s)
def reshape_dimensions(x, begin_axis, end_axis, target_dims):
"""
Reshape selected dimensions for all tensors in nested dictionary or list or tuple
to a target dimension.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
begin_axis (int): begin dimension
end_axis (int): end dimension
target_dims (tuple or list): target shape for the range of dimensions
(@begin_axis, @end_axis)
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x, b=begin_axis, e=end_axis, t=target_dims: reshape_dimensions_single(
x, begin_axis=b, end_axis=e, target_dims=t
),
np.ndarray: lambda x, b=begin_axis, e=end_axis, t=target_dims: reshape_dimensions_single(
x, begin_axis=b, end_axis=e, target_dims=t
),
type(None): lambda x: x,
},
)
def join_dimensions(x, begin_axis, end_axis):
"""
Joins all dimensions between dimensions (@begin_axis, @end_axis) into a flat dimension, for
all tensors in nested dictionary or list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
begin_axis (int): begin dimension
end_axis (int): end dimension
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x, b=begin_axis, e=end_axis: reshape_dimensions_single(
x, begin_axis=b, end_axis=e, target_dims=[-1]
),
np.ndarray: lambda x, b=begin_axis, e=end_axis: reshape_dimensions_single(
x, begin_axis=b, end_axis=e, target_dims=[-1]
),
type(None): lambda x: x,
},
)
def expand_at_single(x, size, dim):
"""
Expand a tensor at a single dimension @dim by @size
Args:
x (torch.Tensor): input tensor
size (int): size to expand
dim (int): dimension to expand
Returns:
y (torch.Tensor): expanded tensor
"""
assert dim < x.ndimension()
assert x.shape[dim] == 1
expand_dims = [-1] * x.ndimension()
expand_dims[dim] = size
return x.expand(*expand_dims)
def expand_at(x, size, dim):
"""
Expand all tensors in nested dictionary or list or tuple at a single
dimension @dim by @size.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
size (int): size to expand
dim (int): dimension to expand
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return map_tensor(x, lambda t, s=size, d=dim: expand_at_single(t, s, d))
def unsqueeze_expand_at(x, size, dim):
"""
Unsqueeze and expand a tensor at a dimension @dim by @size.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
size (int): size to expand
dim (int): dimension to unsqueeze and expand
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
x = unsqueeze(x, dim)
return expand_at(x, size, dim)
def repeat_by_expand_at(x, repeats, dim):
"""
Repeat a dimension by combining expand and reshape operations.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
repeats (int): number of times to repeat the target dimension
dim (int): dimension to repeat on
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
x = unsqueeze_expand_at(x, repeats, dim + 1)
return join_dimensions(x, dim, dim + 1)
def named_reduce_single(x, reduction, dim):
"""
Reduce tensor at a dimension by named reduction functions.
Args:
x (torch.Tensor): tensor to be reduced
reduction (str): one of ["sum", "max", "mean", "flatten"]
dim (int): dimension to be reduced (or begin axis for flatten)
Returns:
y (torch.Tensor): reduced tensor
"""
assert x.ndimension() > dim
assert reduction in ["sum", "max", "mean", "flatten"]
if reduction == "flatten":
x = flatten(x, begin_axis=dim)
elif reduction == "max":
x = torch.max(x, dim=dim)[0] # [B, D]
elif reduction == "sum":
x = torch.sum(x, dim=dim)
else:
x = torch.mean(x, dim=dim)
return x
def named_reduce(x, reduction, dim):
"""
Reduces all tensors in nested dictionary or list or tuple at a dimension
using a named reduction function.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
reduction (str): one of ["sum", "max", "mean", "flatten"]
dim (int): dimension to be reduced (or begin axis for flatten)
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return map_tensor(x, func=lambda t, r=reduction, d=dim: named_reduce_single(t, r, d))
def gather_along_dim_with_dim_single(x, target_dim, source_dim, indices):
"""
This function indexes out a target dimension of a tensor in a structured way,
by allowing a different value to be selected for each member of a flat index
tensor (@indices) corresponding to a source dimension. This can be interpreted
as moving along the source dimension, using the corresponding index value
in @indices to select values for all other dimensions outside of the
source and target dimensions. A common use case is to gather values
in target dimension 1 for each batch member (target dimension 0).
Args:
x (torch.Tensor): tensor to gather values for
target_dim (int): dimension to gather values along
source_dim (int): dimension to hold constant and use for gathering values
from the other dimensions
indices (torch.Tensor): flat index tensor with same shape as tensor @x along
@source_dim
Returns:
y (torch.Tensor): gathered tensor, with dimension @target_dim indexed out
"""
assert len(indices.shape) == 1
assert x.shape[source_dim] == indices.shape[0]
# unsqueeze in all dimensions except the source dimension
new_shape = [1] * x.ndimension()
new_shape[source_dim] = -1
indices = indices.reshape(*new_shape)
# repeat in all dimensions - but preserve shape of source dimension,
# and make sure target_dimension has singleton dimension
expand_shape = list(x.shape)
expand_shape[source_dim] = -1
expand_shape[target_dim] = 1
indices = indices.expand(*expand_shape)
out = x.gather(dim=target_dim, index=indices)
return out.squeeze(target_dim)
def gather_along_dim_with_dim(x, target_dim, source_dim, indices):
"""
Apply @gather_along_dim_with_dim_single to all tensors in a nested
dictionary or list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
target_dim (int): dimension to gather values along
source_dim (int): dimension to hold constant and use for gathering values
from the other dimensions
indices (torch.Tensor): flat index tensor with same shape as tensor @x along
@source_dim
Returns:
y (dict or list or tuple): new nested dict-list-tuple
"""
return map_tensor(
x, lambda y, t=target_dim, s=source_dim, i=indices: gather_along_dim_with_dim_single(y, t, s, i)
)
def gather_sequence_single(seq, indices):
"""
Given a tensor with leading dimensions [B, T, ...], gather an element from each sequence in
the batch given an index for each sequence.
Args:
seq (torch.Tensor): tensor with leading dimensions [B, T, ...]
indices (torch.Tensor): tensor indices of shape [B]
Return:
y (torch.Tensor): indexed tensor of shape [B, ....]
"""
return gather_along_dim_with_dim_single(seq, target_dim=1, source_dim=0, indices=indices)
def gather_sequence(seq, indices):
"""
Given a nested dictionary or list or tuple, gathers an element from each sequence of the batch
for tensors with leading dimensions [B, T, ...].
Args:
seq (dict or list or tuple): a possibly nested dictionary or list or tuple with tensors
of leading dimensions [B, T, ...]
indices (torch.Tensor): tensor indices of shape [B]
Returns:
y (dict or list or tuple): new nested dict-list-tuple with tensors of shape [B, ...]
"""
return gather_along_dim_with_dim(seq, target_dim=1, source_dim=0, indices=indices)
def pad_sequence_single(seq, padding, batched=False, pad_same=True, pad_values=None):
"""
Pad input tensor or array @seq in the time dimension (dimension 1).
Args:
seq (np.ndarray or torch.Tensor): sequence to be padded
padding (tuple): begin and end padding, e.g. [1, 1] pads both begin and end of the sequence by 1
batched (bool): if sequence has the batch dimension
pad_same (bool): if pad by duplicating
pad_values (scalar or (ndarray, Tensor)): values to be padded if not pad_same
Returns:
padded sequence (np.ndarray or torch.Tensor)
"""
assert isinstance(seq, (np.ndarray, torch.Tensor))
assert pad_same or pad_values is not None
if pad_values is not None:
assert isinstance(pad_values, float)
repeat_func = np.repeat if isinstance(seq, np.ndarray) else torch.repeat_interleave
concat_func = np.concatenate if isinstance(seq, np.ndarray) else torch.cat
ones_like_func = np.ones_like if isinstance(seq, np.ndarray) else torch.ones_like
seq_dim = 1 if batched else 0
begin_pad = []
end_pad = []
if padding[0] > 0:
pad = seq[[0]] if pad_same else ones_like_func(seq[[0]]) * pad_values
begin_pad.append(repeat_func(pad, padding[0], seq_dim))
if padding[1] > 0:
pad = seq[[-1]] if pad_same else ones_like_func(seq[[-1]]) * pad_values
end_pad.append(repeat_func(pad, padding[1], seq_dim))
return concat_func(begin_pad + [seq] + end_pad, seq_dim)
def pad_sequence(seq, padding, batched=False, pad_same=True, pad_values=None):
"""
Pad a nested dictionary or list or tuple of sequence tensors in the time dimension (dimension 1).
Args:
seq (dict or list or tuple): a possibly nested dictionary or list or tuple with tensors
of leading dimensions [B, T, ...]
padding (tuple): begin and end padding, e.g. [1, 1] pads both begin and end of the sequence by 1
batched (bool): if sequence has the batch dimension
pad_same (bool): if pad by duplicating
pad_values (scalar or (ndarray, Tensor)): values to be padded if not pad_same
Returns:
padded sequence (dict or list or tuple)
"""
return recursive_dict_list_tuple_apply(
seq,
{
torch.Tensor: lambda x, p=padding, b=batched, ps=pad_same, pv=pad_values: pad_sequence_single(
x, p, b, ps, pv
),
np.ndarray: lambda x, p=padding, b=batched, ps=pad_same, pv=pad_values: pad_sequence_single(
x, p, b, ps, pv
),
type(None): lambda x: x,
},
)
def assert_size_at_dim_single(x, size, dim, msg):
"""
Ensure that array or tensor @x has size @size in dim @dim.
Args:
x (np.ndarray or torch.Tensor): input array or tensor
size (int): size that tensors should have at @dim
dim (int): dimension to check
msg (str): text to display if assertion fails
"""
assert x.shape[dim] == size, msg
def assert_size_at_dim(x, size, dim, msg):
"""
Ensure that arrays and tensors in nested dictionary or list or tuple have
size @size in dim @dim.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
size (int): size that tensors should have at @dim
dim (int): dimension to check
"""
map_tensor(x, lambda t, s=size, d=dim, m=msg: assert_size_at_dim_single(t, s, d, m))
def get_shape(x):
"""
Get all shapes of arrays and tensors in nested dictionary or list or tuple.
Args:
x (dict or list or tuple): a possibly nested dictionary or list or tuple
Returns:
y (dict or list or tuple): new nested dict-list-tuple that contains each array or
tensor's shape
"""
return recursive_dict_list_tuple_apply(
x,
{
torch.Tensor: lambda x: x.shape,
np.ndarray: lambda x: x.shape,
type(None): lambda x: x,
},
)
def list_of_flat_dict_to_dict_of_list(list_of_dict):
"""
Helper function to go from a list of flat dictionaries to a dictionary of lists.
By "flat" we mean that none of the values are dictionaries, but are numpy arrays,
floats, etc.
Args:
list_of_dict (list): list of flat dictionaries
Returns:
dict_of_list (dict): dictionary of lists
"""
assert isinstance(list_of_dict, list)
dic = collections.OrderedDict()
for i in range(len(list_of_dict)):
for k in list_of_dict[i]:
if k not in dic:
dic[k] = []
dic[k].append(list_of_dict[i][k])
return dic
def flatten_nested_dict_list(d, parent_key="", sep="_", item_key=""):
"""
Flatten a nested dict or list to a list.
For example, given a dict
{
a: 1
b: {
c: 2
}
c: 3
}
the function would return [(a, 1), (b_c, 2), (c, 3)]
Args:
d (dict, list): a nested dict or list to be flattened
parent_key (str): recursion helper
sep (str): separator for nesting keys
item_key (str): recursion helper
Returns:
list: a list of (key, value) tuples
"""
items = []
if isinstance(d, (tuple, list)):
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
for i, v in enumerate(d):
items.extend(flatten_nested_dict_list(v, new_key, sep=sep, item_key=str(i)))
return items
elif isinstance(d, dict):
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
for k, v in d.items():
assert isinstance(k, str)
items.extend(flatten_nested_dict_list(v, new_key, sep=sep, item_key=k))
return items
else:
new_key = parent_key + sep + item_key if len(parent_key) > 0 else item_key
return [(new_key, d)]
def time_distributed(inputs, op, activation=None, inputs_as_kwargs=False, inputs_as_args=False, **kwargs):
"""
Apply function @op to all tensors in nested dictionary or list or tuple @inputs in both the
batch (B) and time (T) dimension, where the tensors are expected to have shape [B, T, ...].
Will do this by reshaping tensors to [B * T, ...], passing through the op, and then reshaping
outputs to [B, T, ...].
Args:
inputs (list or tuple or dict): a possibly nested dictionary or list or tuple with tensors
of leading dimensions [B, T, ...]
op: a layer op that accepts inputs
activation: activation to apply at the output
inputs_as_kwargs (bool): whether to feed input as a kwargs dict to the op
inputs_as_args (bool) whether to feed input as a args list to the op
kwargs (dict): other kwargs to supply to the op
Returns:
outputs (dict or list or tuple): new nested dict-list-tuple with tensors of leading dimension [B, T].
"""
batch_size, seq_len = flatten_nested_dict_list(inputs)[0][1].shape[:2]
inputs = join_dimensions(inputs, 0, 1)
if inputs_as_kwargs:
outputs = op(**inputs, **kwargs)
elif inputs_as_args:
outputs = op(*inputs, **kwargs)
else:
outputs = op(inputs, **kwargs)
if activation is not None:
outputs = map_tensor(outputs, activation)
outputs = reshape_dimensions(outputs, begin_axis=0, end_axis=0, target_dims=(batch_size, seq_len))
return outputs