189 lines
5.8 KiB
Python
189 lines
5.8 KiB
Python
import importlib
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tensordict import TensorDict
|
|
from torchrl.data.tensor_specs import (
|
|
BoundedTensorSpec,
|
|
CompositeSpec,
|
|
DiscreteTensorSpec,
|
|
UnboundedContinuousTensorSpec,
|
|
)
|
|
from torchrl.envs import EnvBase
|
|
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
|
|
|
from lerobot.common.utils import set_seed
|
|
|
|
_has_gym = importlib.util.find_spec("gym") is not None
|
|
_has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
|
|
|
|
|
|
class SimxarmEnv(EnvBase):
|
|
|
|
def __init__(
|
|
self,
|
|
task,
|
|
frame_skip: int = 1,
|
|
from_pixels: bool = False,
|
|
pixels_only: bool = False,
|
|
image_size=None,
|
|
seed=1337,
|
|
device="cpu",
|
|
):
|
|
super().__init__(device=device, batch_size=[])
|
|
self.task = task
|
|
self.frame_skip = frame_skip
|
|
self.from_pixels = from_pixels
|
|
self.pixels_only = pixels_only
|
|
self.image_size = image_size
|
|
|
|
if pixels_only:
|
|
assert from_pixels
|
|
if from_pixels:
|
|
assert image_size
|
|
|
|
if not _has_simxarm:
|
|
raise ImportError("Cannot import simxarm.")
|
|
if not _has_gym:
|
|
raise ImportError("Cannot import gym.")
|
|
|
|
import gym
|
|
from gym.wrappers import TimeLimit
|
|
from simxarm import TASKS
|
|
|
|
if self.task not in TASKS:
|
|
raise ValueError(
|
|
f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}"
|
|
)
|
|
|
|
self._env = TASKS[self.task]["env"]()
|
|
self._env = TimeLimit(self._env, TASKS[self.task]["episode_length"])
|
|
|
|
MAX_NUM_ACTIONS = 4
|
|
num_actions = len(TASKS[self.task]["action_space"])
|
|
self._action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
|
|
self._action_padding = np.zeros(
|
|
(MAX_NUM_ACTIONS - num_actions), dtype=np.float32
|
|
)
|
|
if "w" not in TASKS[self.task]["action_space"]:
|
|
self._action_padding[-1] = 1.0
|
|
|
|
self._make_spec()
|
|
self.set_seed(seed)
|
|
|
|
def render(self, mode="rgb_array", width=384, height=384):
|
|
return self._env.render(mode, width=width, height=height)
|
|
|
|
def _format_raw_obs(self, raw_obs):
|
|
if self.from_pixels:
|
|
camera = self.render(
|
|
mode="rgb_array", width=self.image_size, height=self.image_size
|
|
)
|
|
camera = camera.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
|
|
camera = torch.tensor(camera.copy(), dtype=torch.uint8)
|
|
|
|
obs = {"camera": camera}
|
|
|
|
if not self.pixels_only:
|
|
obs["robot_state"] = torch.tensor(
|
|
self._env.robot_state, dtype=torch.float32
|
|
)
|
|
else:
|
|
obs = {"state": torch.tensor(raw_obs["observation"], dtype=torch.float32)}
|
|
|
|
obs = TensorDict(obs, batch_size=[])
|
|
return obs
|
|
|
|
def _reset(self, tensordict: Optional[TensorDict] = None):
|
|
td = tensordict
|
|
if td is None or td.is_empty():
|
|
raw_obs = self._env.reset()
|
|
|
|
td = TensorDict(
|
|
{
|
|
"observation": self._format_raw_obs(raw_obs),
|
|
"done": torch.tensor([False], dtype=torch.bool),
|
|
},
|
|
batch_size=[],
|
|
)
|
|
else:
|
|
raise NotImplementedError()
|
|
return td
|
|
|
|
def _step(self, tensordict: TensorDict):
|
|
td = tensordict
|
|
action = td["action"].numpy()
|
|
# step expects shape=(4,) so we pad if necessary
|
|
action = np.concatenate([action, self._action_padding])
|
|
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
|
sum_reward = 0
|
|
for t in range(self.frame_skip):
|
|
raw_obs, reward, done, info = self._env.step(action)
|
|
sum_reward += reward
|
|
|
|
td = TensorDict(
|
|
{
|
|
"observation": self._format_raw_obs(raw_obs),
|
|
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
|
"done": torch.tensor([done], dtype=torch.bool),
|
|
"success": torch.tensor([info["success"]], dtype=torch.bool),
|
|
},
|
|
batch_size=[],
|
|
)
|
|
return td
|
|
|
|
def _make_spec(self):
|
|
obs = {}
|
|
if self.from_pixels:
|
|
obs["camera"] = BoundedTensorSpec(
|
|
low=0,
|
|
high=255,
|
|
shape=(3, self.image_size, self.image_size),
|
|
dtype=torch.uint8,
|
|
device=self.device,
|
|
)
|
|
if not self.pixels_only:
|
|
obs["robot_state"] = UnboundedContinuousTensorSpec(
|
|
shape=(len(self._env.robot_state),),
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
else:
|
|
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
|
obs["state"] = UnboundedContinuousTensorSpec(
|
|
shape=self._env.observation_space["observation"].shape,
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
self.observation_spec = CompositeSpec({"observation": obs})
|
|
|
|
self.action_spec = _gym_to_torchrl_spec_transform(
|
|
self._action_space,
|
|
device=self.device,
|
|
)
|
|
|
|
self.reward_spec = UnboundedContinuousTensorSpec(
|
|
shape=(1,),
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
|
|
self.done_spec = DiscreteTensorSpec(
|
|
2,
|
|
shape=(1,),
|
|
dtype=torch.bool,
|
|
device=self.device,
|
|
)
|
|
|
|
self.success_spec = DiscreteTensorSpec(
|
|
2,
|
|
shape=(1,),
|
|
dtype=torch.bool,
|
|
device=self.device,
|
|
)
|
|
|
|
def _set_seed(self, seed: Optional[int]):
|
|
set_seed(seed)
|
|
self._env.seed(seed)
|