214 lines
7.5 KiB
Python
214 lines
7.5 KiB
Python
from pathlib import Path
|
|
from typing import Callable
|
|
|
|
import einops
|
|
import numpy as np
|
|
import pygame
|
|
import pymunk
|
|
import torch
|
|
import torchrl
|
|
import tqdm
|
|
from tensordict import TensorDict
|
|
from torchrl.data.replay_buffers.samplers import SliceSampler
|
|
from torchrl.data.replay_buffers.storages import TensorStorage
|
|
from torchrl.data.replay_buffers.writers import Writer
|
|
|
|
from diffusion_policy.common.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
|
|
from diffusion_policy.env.pusht.pusht_env import pymunk_to_shapely
|
|
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
|
from lerobot.common.datasets.utils import download_and_extract_zip
|
|
|
|
# as define in env
|
|
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
|
|
|
|
DEFAULT_TEE_MASK = pymunk.ShapeFilter.ALL_MASKS()
|
|
PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
|
|
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
|
|
|
|
|
|
def get_goal_pose_body(pose):
|
|
mass = 1
|
|
inertia = pymunk.moment_for_box(mass, (50, 100))
|
|
body = pymunk.Body(mass, inertia)
|
|
# preserving the legacy assignment order for compatibility
|
|
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
|
|
body.position = pose[:2].tolist()
|
|
body.angle = pose[2]
|
|
return body
|
|
|
|
|
|
def add_segment(space, a, b, radius):
|
|
shape = pymunk.Segment(space.static_body, a, b, radius)
|
|
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
|
|
return shape
|
|
|
|
|
|
def add_tee(
|
|
space,
|
|
position,
|
|
angle,
|
|
scale=30,
|
|
color="LightSlateGray",
|
|
mask=DEFAULT_TEE_MASK,
|
|
):
|
|
mass = 1
|
|
length = 4
|
|
vertices1 = [
|
|
(-length * scale / 2, scale),
|
|
(length * scale / 2, scale),
|
|
(length * scale / 2, 0),
|
|
(-length * scale / 2, 0),
|
|
]
|
|
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
|
vertices2 = [
|
|
(-scale / 2, scale),
|
|
(-scale / 2, length * scale),
|
|
(scale / 2, length * scale),
|
|
(scale / 2, scale),
|
|
]
|
|
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
|
body = pymunk.Body(mass, inertia1 + inertia2)
|
|
shape1 = pymunk.Poly(body, vertices1)
|
|
shape2 = pymunk.Poly(body, vertices2)
|
|
shape1.color = pygame.Color(color)
|
|
shape2.color = pygame.Color(color)
|
|
shape1.filter = pymunk.ShapeFilter(mask=mask)
|
|
shape2.filter = pymunk.ShapeFilter(mask=mask)
|
|
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
|
|
body.position = position
|
|
body.angle = angle
|
|
body.friction = 1
|
|
space.add(body, shape1, shape2)
|
|
return body
|
|
|
|
|
|
class PushtExperienceReplay(AbstractExperienceReplay):
|
|
def __init__(
|
|
self,
|
|
dataset_id: str,
|
|
batch_size: int = None,
|
|
*,
|
|
shuffle: bool = True,
|
|
root: Path = None,
|
|
pin_memory: bool = False,
|
|
prefetch: int = None,
|
|
sampler: SliceSampler = None,
|
|
collate_fn: Callable = None,
|
|
writer: Writer = None,
|
|
transform: "torchrl.envs.Transform" = None,
|
|
):
|
|
super().__init__(
|
|
dataset_id,
|
|
batch_size,
|
|
shuffle=shuffle,
|
|
root=root,
|
|
pin_memory=pin_memory,
|
|
prefetch=prefetch,
|
|
sampler=sampler,
|
|
collate_fn=collate_fn,
|
|
writer=writer,
|
|
transform=transform,
|
|
)
|
|
|
|
def _download_and_preproc(self):
|
|
raw_dir = self.data_dir / "raw"
|
|
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
|
|
if not zarr_path.is_dir():
|
|
raw_dir.mkdir(parents=True, exist_ok=True)
|
|
download_and_extract_zip(PUSHT_URL, raw_dir)
|
|
|
|
# load
|
|
dataset_dict = DiffusionPolicyReplayBuffer.copy_from_path(
|
|
zarr_path
|
|
) # , keys=['img', 'state', 'action'])
|
|
|
|
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
|
|
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
|
|
total_frames = dataset_dict["action"].shape[0]
|
|
assert len(
|
|
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
|
|
), "Some data type dont have the same number of total frames."
|
|
|
|
# TODO: verify that goal pose is expected to be fixed
|
|
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
|
|
goal_body = get_goal_pose_body(goal_pos_angle)
|
|
|
|
imgs = torch.from_numpy(dataset_dict["img"])
|
|
imgs = einops.rearrange(imgs, "b h w c -> b c h w")
|
|
states = torch.from_numpy(dataset_dict["state"])
|
|
actions = torch.from_numpy(dataset_dict["action"])
|
|
|
|
idx0 = 0
|
|
idxtd = 0
|
|
for episode_id in tqdm.tqdm(range(num_episodes)):
|
|
idx1 = dataset_dict.meta["episode_ends"][episode_id]
|
|
|
|
num_frames = idx1 - idx0
|
|
|
|
assert (episode_ids[idx0:idx1] == episode_id).all()
|
|
|
|
image = imgs[idx0:idx1]
|
|
|
|
state = states[idx0:idx1]
|
|
agent_pos = state[:, :2]
|
|
block_pos = state[:, 2:4]
|
|
block_angle = state[:, 4]
|
|
|
|
reward = torch.zeros(num_frames, 1)
|
|
success = torch.zeros(num_frames, 1, dtype=torch.bool)
|
|
done = torch.zeros(num_frames, 1, dtype=torch.bool)
|
|
for i in range(num_frames):
|
|
space = pymunk.Space()
|
|
space.gravity = 0, 0
|
|
space.damping = 0
|
|
|
|
# Add walls.
|
|
walls = [
|
|
add_segment(space, (5, 506), (5, 5), 2),
|
|
add_segment(space, (5, 5), (506, 5), 2),
|
|
add_segment(space, (506, 5), (506, 506), 2),
|
|
add_segment(space, (5, 506), (506, 506), 2),
|
|
]
|
|
space.add(*walls)
|
|
|
|
block_body = add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
|
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
|
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
|
intersection_area = goal_geom.intersection(block_geom).area
|
|
goal_area = goal_geom.area
|
|
coverage = intersection_area / goal_area
|
|
reward[i] = np.clip(coverage / SUCCESS_THRESHOLD, 0, 1)
|
|
success[i] = coverage > SUCCESS_THRESHOLD
|
|
|
|
# last step of demonstration is considered done
|
|
done[-1] = True
|
|
|
|
print("before " + """episode = TensorDict(""")
|
|
episode = TensorDict(
|
|
{
|
|
("observation", "image"): image[:-1],
|
|
("observation", "state"): agent_pos[:-1],
|
|
"action": actions[idx0:idx1][:-1],
|
|
"episode": episode_ids[idx0:idx1][:-1],
|
|
"frame_id": torch.arange(0, num_frames - 1, 1),
|
|
("next", "observation", "image"): image[1:],
|
|
("next", "observation", "state"): agent_pos[1:],
|
|
# TODO: verify that reward and done are aligned with image and agent_pos
|
|
("next", "reward"): reward[1:],
|
|
("next", "done"): done[1:],
|
|
("next", "success"): success[1:],
|
|
},
|
|
batch_size=num_frames - 1,
|
|
)
|
|
|
|
if episode_id == 0:
|
|
# hack to initialize tensordict data structure to store episodes
|
|
td_data = episode[0].expand(total_frames).memmap_like(self.data_dir)
|
|
|
|
td_data[idxtd : idxtd + len(episode)] = episode
|
|
|
|
idx0 = idx1
|
|
idxtd = idxtd + len(episode)
|
|
|
|
return TensorStorage(td_data.lock_())
|