lerobot/tests/datasets/test_utils.py

87 lines
2.5 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from copy import deepcopy
import torch
from datasets import Dataset
from huggingface_hub import DatasetCard
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import (
create_lerobot_dataset_card,
flatten_dict,
hf_transform_to_torch,
unflatten_dict,
)
def test_default_parameters():
card = create_lerobot_dataset_card()
assert isinstance(card, DatasetCard)
assert card.data.tags == ["LeRobot"]
assert card.data.task_categories == ["robotics"]
assert card.data.configs == [
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
]
def test_with_tags():
tags = ["tag1", "tag2"]
card = create_lerobot_dataset_card(tags=tags)
assert card.data.tags == ["LeRobot", "tag1", "tag2"]
def test_calculate_episode_data_index():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
assert torch.equal(episode_data_index["from"], torch.tensor([0, 2, 3]))
assert torch.equal(episode_data_index["to"], torch.tensor([2, 3, 6]))
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"