lerobot/tests/test_datasets.py

191 lines
7.7 KiB
Python

import os
from pathlib import Path
import einops
import pytest
import torch
from lerobot.common.datasets.utils import compute_stats, get_stats_einops_patterns, load_data_with_delta_timestamps
from lerobot.common.datasets.xarm import XarmDataset
from lerobot.common.transforms import Prod
from lerobot.common.utils import init_hydra_config
import logging
from lerobot.common.datasets.factory import make_dataset
from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
"env_name,dataset_id,policy_name",
[
("xarm", "xarm_lift_medium", "tdmpc"),
("pusht", "pusht", "diffusion"),
("aloha", "aloha_sim_insertion_human", "act"),
("aloha", "aloha_sim_insertion_scripted", "act"),
("aloha", "aloha_sim_transfer_cube_human", "act"),
("aloha", "aloha_sim_transfer_cube_scripted", "act"),
],
)
def test_factory(env_name, dataset_id, policy_name):
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[f"env={env_name}", f"dataset_id={dataset_id}", f"policy={policy_name}", f"device={DEVICE}"]
)
dataset = make_dataset(cfg)
delta_timestamps = dataset.delta_timestamps
image_keys = dataset.image_keys
item = dataset[0]
keys_ndim_required = [
("action", 1, True),
("episode", 0, True),
("frame_id", 0, True),
("timestamp", 0, True),
# TODO(rcadene): should we rename it agent_pos?
("observation.state", 1, True),
("next.reward", 0, False),
("next.done", 0, False),
]
for key in image_keys:
keys_ndim_required.append(
(key, 3, True),
)
# test number of dimensions
for key, ndim, required in keys_ndim_required:
if key not in item:
if required:
assert key in item, f"{key}"
else:
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
continue
if delta_timestamps is not None and key in delta_timestamps:
assert item[key].ndim == ndim + 1, f"{key}"
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
else:
assert item[key].ndim == ndim, f"{key}"
if key in image_keys:
assert item[key].dtype == torch.float32, f"{key}"
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert item[key].max() <= 1.0, f"{key}"
assert item[key].min() >= 0.0, f"{key}"
if delta_timestamps is not None and key in delta_timestamps:
# test t,c,h,w
assert item[key].shape[1] == 3, f"{key}"
else:
# test c,h,w
assert item[key].shape[0] == 3, f"{key}"
if delta_timestamps is not None:
# test missing keys in delta_timestamps
for key in delta_timestamps:
assert key in item, f"{key}"
def test_compute_stats():
"""Check that the statistics are computed correctly according to the stats_patterns property.
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
because we are working with a small dataset).
"""
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
# get transform to convert images from uint8 [0,255] to float32 [0,1]
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
dataset = XarmDataset(
dataset_id="xarm_lift_medium",
root=DATA_DIR,
transform=transform,
)
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
# dataset into even batches.
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
# get einops patterns to aggregate batches and compute statistics
stats_patterns = get_stats_einops_patterns(dataset)
# get all frames from the dataset in the same dtype and range as during compute_stats
data_dict = transform(dataset.data_dict)
# compute stats based on all frames from the dataset without any batching
expected_stats = {}
for k, pattern in stats_patterns.items():
expected_stats[k] = {}
expected_stats[k]["mean"] = einops.reduce(data_dict[k], pattern, "mean")
expected_stats[k]["std"] = torch.sqrt(einops.reduce((data_dict[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean"))
expected_stats[k]["min"] = einops.reduce(data_dict[k], pattern, "min")
expected_stats[k]["max"] = einops.reduce(data_dict[k], pattern, "max")
# test computed stats match expected stats
for k in stats_patterns:
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
# TODO(rcadene): check that the stats used for training are correct too
# # load stats that are expected to match the ones returned by computed_stats
# assert (dataset.data_dir / "stats.pth").exists()
# loaded_stats = torch.load(dataset.data_dir / "stats.pth")
# # test loaded stats match expected stats
# for k in stats_patterns:
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
def test_load_data_with_delta_timestamps_within_tolerance():
data_dict = {
"timestamp": torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]),
"index": torch.tensor([0, 1, 2, 3, 4]),
}
data_ids_per_episode = {0: torch.tensor([0, 1, 2, 3, 4])}
delta_timestamps = {"index": [-0.2, 0, 0.139]}
key = "index"
current_ts = 0.3
episode = 0
tol = 0.04
data, is_pad = load_data_with_delta_timestamps(data_dict, data_ids_per_episode, delta_timestamps, key, current_ts, episode, tol)
assert not is_pad.any(), "Unexpected padding detected"
assert torch.equal(data, torch.tensor([0, 2, 4])), "Data does not match expected values"
def test_load_data_with_delta_timestamps_outside_tolerance_inside_episode_range():
data_dict = {
"timestamp": torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]),
"index": torch.tensor([0, 1, 2, 3, 4]),
}
data_ids_per_episode = {0: torch.tensor([0, 1, 2, 3, 4])}
delta_timestamps = {"index": [-0.2, 0, 0.141]}
key = "index"
current_ts = 0.3
episode = 0
tol = 0.04
with pytest.raises(AssertionError):
load_data_with_delta_timestamps(data_dict, data_ids_per_episode, delta_timestamps, key, current_ts, episode, tol)
def test_load_data_with_delta_timestamps_outside_tolerance_outside_episode_range():
data_dict = {
"timestamp": torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]),
"index": torch.tensor([0, 1, 2, 3, 4]),
}
data_ids_per_episode = {0: torch.tensor([0, 1, 2, 3, 4])}
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
key = "index"
current_ts = 0.3
episode = 0
tol = 0.04
data, is_pad = load_data_with_delta_timestamps(data_dict, data_ids_per_episode, delta_timestamps, key, current_ts, episode, tol)
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), "Padding does not match expected values"
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"