lerobot/lerobot/common/datasets/sampler.py

185 lines
6.3 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from typing import Iterator, List, Optional, Union
import torch
from torch.utils.data import Sampler
class EpisodeAwareSampler:
def __init__(
self,
episode_data_index: dict,
episode_indices_to_use: Union[list, None] = None,
drop_n_first_frames: int = 0,
drop_n_last_frames: int = 0,
shuffle: bool = False,
):
"""Sampler that optionally incorporates episode boundary information.
Args:
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
Assumes that episodes are indexed from 0 to N-1.
drop_n_first_frames: Number of frames to drop from the start of each episode.
drop_n_last_frames: Number of frames to drop from the end of each episode.
shuffle: Whether to shuffle the indices.
"""
indices = []
for episode_idx, (start_index, end_index) in enumerate(
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
):
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
indices.extend(
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
)
self.indices = indices
self.shuffle = shuffle
def __iter__(self) -> Iterator[int]:
if self.shuffle:
for i in torch.randperm(len(self.indices)):
yield self.indices[i]
else:
for i in self.indices:
yield i
def __len__(self) -> int:
return len(self.indices)
class SumTree:
"""
A classic sum-tree data structure for storing priorities.
Each leaf stores a sample's priority, and internal nodes store sums of children.
"""
def __init__(self, capacity: int):
"""
Args:
capacity: Maximum number of elements.
"""
self.capacity = capacity
self.size = capacity
self.tree = [0.0] * (2 * self.size)
def initialize_tree(self, priorities: List[float]):
"""
Initializes the sum tree
"""
# Set leaf values
for i, priority in enumerate(priorities):
self.tree[i + self.size] = priority
# Compute internal node values
for i in range(self.size - 1, 0, -1):
self.tree[i] = self.tree[2 * i] + self.tree[2 * i + 1]
def update(self, idx: int, priority: float):
"""
Update the priority at leaf index `idx` and propagate changes upwards.
"""
tree_idx = idx + self.size
self.tree[tree_idx] = priority # Set new priority
# Propagate up, explicitly summing children
tree_idx //= 2
while tree_idx >= 1:
self.tree[tree_idx] = self.tree[2 * tree_idx] + self.tree[2 * tree_idx + 1]
tree_idx //= 2
def total_priority(self) -> float:
"""Returns the sum of all priorities (stored at root)."""
return self.tree[1]
def sample(self, value: float) -> int:
"""
Samples an index where the prefix sum up to that leaf is >= `value`.
"""
value = min(max(value, 0), self.total_priority()) # Clamp value
idx = 1
while idx < self.size:
left = 2 * idx
if self.tree[left] >= value:
idx = left
else:
value -= self.tree[left]
idx = left + 1
return idx - self.size # Convert tree index to data index
class PrioritizedSampler(Sampler[int]):
"""
PyTorch Sampler that draws samples in proportion to their priority using a SumTree.
"""
def __init__(
self,
data_len: int,
alpha: float = 0.6,
eps: float = 1e-6,
num_samples_per_epoch: Optional[int] = None,
):
"""
Args:
data_len: Total number of samples in the dataset.
alpha: Exponent for priority scaling. Default is 0.6.
beta: Used in important sampling (IS). Default is 0.4,
eps: Small constant to avoid zero priorities.
num_samples_per_epoch: Number of samples per epoch (default is data_len).
"""
self.data_len = data_len
self.alpha = alpha
self.eps = eps
self.num_samples_per_epoch = num_samples_per_epoch or data_len
# Initialize difficulties and sum-tree
self.difficulties = [1.0] * data_len
self.priorities = [0.0] * data_len
initial_priorities = [(1.0 + eps) ** alpha] * data_len
self.sumtree = SumTree(data_len)
self.sumtree.initialize_tree(initial_priorities)
for i, p in enumerate(initial_priorities):
self.priorities[i] = p
def update_priorities(self, indices: List[int], difficulties: List[float]):
"""
Updates the priorities in the sum-tree.
"""
for idx, diff in zip(indices, difficulties, strict=False):
self.difficulties[idx] = diff
new_priority = (diff + self.eps) ** self.alpha
self.priorities[idx] = new_priority
self.sumtree.update(idx, new_priority)
def __iter__(self) -> Iterator[int]:
"""
Samples indices based on their priority weights.
"""
total_p = self.sumtree.total_priority()
for _ in range(self.num_samples_per_epoch):
r = random.random() * total_p
idx = self.sumtree.sample(r)
yield idx
def __len__(self) -> int:
return self.num_samples_per_epoch