lerobot/lerobot/common/datasets/pusht.py

84 lines
2.6 KiB
Python

from pathlib import Path
import torch
from datasets import load_dataset, load_from_disk
from lerobot.common.datasets.utils import load_previous_and_future_frames
class PushtDataset(torch.utils.data.Dataset):
"""
https://huggingface.co/datasets/lerobot/pusht
Arguments
----------
delta_timestamps : dict[list[float]] | None, optional
Loads data from frames with a shift in timestamps with a different strategy for each data key (e.g. state, action or image)
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
"""
# Copied from lerobot/__init__.py
available_datasets = ["pusht"]
fps = 10
image_keys = ["observation.image"]
def __init__(
self,
dataset_id: str = "pusht",
version: str | None = "v1.0",
root: Path | None = None,
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.delta_timestamps = delta_timestamps
if self.root is not None:
self.hf_dataset = load_from_disk(Path(self.root) / self.dataset_id / self.split)
else:
self.hf_dataset = load_dataset(
f"lerobot/{self.dataset_id}", revision=self.version, split=self.split
)
self.hf_dataset = self.hf_dataset.with_format("torch")
@property
def num_samples(self) -> int:
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
return len(self.hf_dataset.unique("episode_id"))
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = self.hf_dataset[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(
item,
self.hf_dataset,
self.delta_timestamps,
tol=1 / self.fps - 1e-4, # 1e-4 to account for possible numerical error
)
# convert images from channel last (PIL) to channel first (pytorch)
for key in self.image_keys:
if item[key].ndim == 3:
item[key] = item[key].permute((2, 0, 1)) # h w c -> c h w
elif item[key].ndim == 4:
item[key] = item[key].permute((0, 3, 1, 2)) # t h w c -> t c h w
else:
raise ValueError(item[key].ndim)
if self.transform is not None:
item = self.transform(item)
return item