lerobot/lerobot/configs/eval.py

99 lines
4.3 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime as dt
import logging
from dataclasses import dataclass, field
from pathlib import Path
from lerobot.common import envs, policies # noqa: F401
from lerobot.common.utils.utils import auto_select_torch_device, is_amp_available, is_torch_device_available
from lerobot.configs import parser
from lerobot.configs.default import EvalConfig
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.train import TrainPipelineConfig
@dataclass
class EvalPipelineConfig:
# Either the repo ID of a model hosted on the Hub or a path to a directory containing weights
# saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch
# (useful for debugging). This argument is mutually exclusive with `--config`.
env: envs.EnvConfig
eval: EvalConfig = field(default_factory=EvalConfig)
policy: PreTrainedConfig | None = None
output_dir: Path | None = None
job_name: str | None = None
# TODO(rcadene, aliberts): By default, use device and use_amp values from policy checkpoint.
device: str | None = None # cuda | cpu | mps
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: bool = False
seed: int | None = 1000
def __post_init__(self):
# HACK: We parse again the cli args here to get the pretrained path if there was one.
policy_path = parser.get_path_arg("policy")
if policy_path:
cli_overrides = parser.get_cli_overrides("policy")
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
# When no device or use_amp are given, use the one from training config.
if self.device is None or self.use_amp is None:
train_cfg = TrainPipelineConfig.from_pretrained(policy_path)
if self.device is None:
self.device = train_cfg.device
if self.use_amp is None:
self.use_amp = train_cfg.use_amp
# Automatically switch to available device if necessary
if not is_torch_device_available(self.device):
auto_device = auto_select_torch_device()
logging.warning(f"Device '{self.device}' is not available. Switching to '{auto_device}'.")
self.device = auto_device
# Automatically deactivate AMP if necessary
if self.use_amp and not is_amp_available(self.device):
logging.warning(
f"Automatic Mixed Precision (amp) is not available on device '{self.device}'. Deactivating AMP."
)
self.use_amp = False
else:
logging.warning(
"No pretrained path was provided, evaluated policy will be built from scratch (random weights)."
)
if not self.job_name:
if self.env is None:
self.job_name = f"{self.policy.type}"
else:
self.job_name = f"{self.env.type}_{self.policy.type}"
if not self.output_dir:
now = dt.datetime.now()
eval_dir = f"{now:%Y-%m-%d}/{now:%H-%M-%S}_{self.job_name}"
self.output_dir = Path("outputs/eval") / eval_dir
if self.device is None:
raise ValueError("Set one of the following device: cuda, cpu or mps")
elif self.device == "cuda" and self.use_amp is None:
raise ValueError("Set 'use_amp' to True or False.")
@classmethod
def __get_path_fields__(cls) -> list[str]:
"""This enables the parser to load config from the policy using `--policy.path=local/dir`"""
return ["policy"]