99 lines
4.3 KiB
Python
99 lines
4.3 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import datetime as dt
|
|
import logging
|
|
from dataclasses import dataclass, field
|
|
from pathlib import Path
|
|
|
|
from lerobot.common import envs, policies # noqa: F401
|
|
from lerobot.common.utils.utils import auto_select_torch_device, is_amp_available, is_torch_device_available
|
|
from lerobot.configs import parser
|
|
from lerobot.configs.default import EvalConfig
|
|
from lerobot.configs.policies import PreTrainedConfig
|
|
from lerobot.configs.train import TrainPipelineConfig
|
|
|
|
|
|
@dataclass
|
|
class EvalPipelineConfig:
|
|
# Either the repo ID of a model hosted on the Hub or a path to a directory containing weights
|
|
# saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch
|
|
# (useful for debugging). This argument is mutually exclusive with `--config`.
|
|
env: envs.EnvConfig
|
|
eval: EvalConfig = field(default_factory=EvalConfig)
|
|
policy: PreTrainedConfig | None = None
|
|
output_dir: Path | None = None
|
|
job_name: str | None = None
|
|
# TODO(rcadene, aliberts): By default, use device and use_amp values from policy checkpoint.
|
|
device: str | None = None # cuda | cpu | mps
|
|
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
|
|
# automatic gradient scaling is used.
|
|
use_amp: bool = False
|
|
seed: int | None = 1000
|
|
|
|
def __post_init__(self):
|
|
# HACK: We parse again the cli args here to get the pretrained path if there was one.
|
|
policy_path = parser.get_path_arg("policy")
|
|
if policy_path:
|
|
cli_overrides = parser.get_cli_overrides("policy")
|
|
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
|
|
self.policy.pretrained_path = policy_path
|
|
|
|
# When no device or use_amp are given, use the one from training config.
|
|
if self.device is None or self.use_amp is None:
|
|
train_cfg = TrainPipelineConfig.from_pretrained(policy_path)
|
|
if self.device is None:
|
|
self.device = train_cfg.device
|
|
if self.use_amp is None:
|
|
self.use_amp = train_cfg.use_amp
|
|
|
|
# Automatically switch to available device if necessary
|
|
if not is_torch_device_available(self.device):
|
|
auto_device = auto_select_torch_device()
|
|
logging.warning(f"Device '{self.device}' is not available. Switching to '{auto_device}'.")
|
|
self.device = auto_device
|
|
|
|
# Automatically deactivate AMP if necessary
|
|
if self.use_amp and not is_amp_available(self.device):
|
|
logging.warning(
|
|
f"Automatic Mixed Precision (amp) is not available on device '{self.device}'. Deactivating AMP."
|
|
)
|
|
self.use_amp = False
|
|
|
|
else:
|
|
logging.warning(
|
|
"No pretrained path was provided, evaluated policy will be built from scratch (random weights)."
|
|
)
|
|
|
|
if not self.job_name:
|
|
if self.env is None:
|
|
self.job_name = f"{self.policy.type}"
|
|
else:
|
|
self.job_name = f"{self.env.type}_{self.policy.type}"
|
|
|
|
if not self.output_dir:
|
|
now = dt.datetime.now()
|
|
eval_dir = f"{now:%Y-%m-%d}/{now:%H-%M-%S}_{self.job_name}"
|
|
self.output_dir = Path("outputs/eval") / eval_dir
|
|
|
|
if self.device is None:
|
|
raise ValueError("Set one of the following device: cuda, cpu or mps")
|
|
elif self.device == "cuda" and self.use_amp is None:
|
|
raise ValueError("Set 'use_amp' to True or False.")
|
|
|
|
@classmethod
|
|
def __get_path_fields__(cls) -> list[str]:
|
|
"""This enables the parser to load config from the policy using `--policy.path=local/dir`"""
|
|
return ["policy"]
|