40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
|
|
from lerobot.common.optim.optimizers import AdamConfig
|
|
from lerobot.common.optim.schedulers import VQBeTSchedulerConfig
|
|
|
|
|
|
@pytest.fixture
|
|
def model_params():
|
|
return [torch.nn.Parameter(torch.randn(10, 10))]
|
|
|
|
|
|
@pytest.fixture
|
|
def optimizer(model_params):
|
|
optimizer = AdamConfig().build(model_params)
|
|
# Dummy step to populate state
|
|
loss = sum(param.sum() for param in model_params)
|
|
loss.backward()
|
|
optimizer.step()
|
|
return optimizer
|
|
|
|
|
|
@pytest.fixture
|
|
def scheduler(optimizer):
|
|
config = VQBeTSchedulerConfig(num_warmup_steps=10, num_vqvae_training_steps=20, num_cycles=0.5)
|
|
return config.build(optimizer, num_training_steps=100)
|