146 lines
5.5 KiB
Python
146 lines
5.5 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from safetensors.torch import save_file
|
|
|
|
from lerobot.common.datasets.factory import make_dataset
|
|
from lerobot.common.optim.factory import make_optimizer_and_scheduler
|
|
from lerobot.common.policies.factory import make_policy, make_policy_config
|
|
from lerobot.common.utils.random_utils import set_seed
|
|
from lerobot.configs.default import DatasetConfig
|
|
from lerobot.configs.train import TrainPipelineConfig
|
|
|
|
|
|
def get_policy_stats(ds_repo_id: str, policy_name: str, policy_kwargs: dict):
|
|
set_seed(1337)
|
|
train_cfg = TrainPipelineConfig(
|
|
# TODO(rcadene, aliberts): remove dataset download
|
|
dataset=DatasetConfig(repo_id=ds_repo_id, episodes=[0]),
|
|
policy=make_policy_config(policy_name, **policy_kwargs),
|
|
)
|
|
train_cfg.validate() # Needed for auto-setting some parameters
|
|
|
|
dataset = make_dataset(train_cfg)
|
|
policy = make_policy(train_cfg.policy, ds_meta=dataset.meta)
|
|
policy.train()
|
|
|
|
optimizer, _ = make_optimizer_and_scheduler(train_cfg, policy)
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
num_workers=0,
|
|
batch_size=train_cfg.batch_size,
|
|
shuffle=False,
|
|
)
|
|
|
|
batch = next(iter(dataloader))
|
|
loss, output_dict = policy.forward(batch)
|
|
if output_dict is not None:
|
|
output_dict = {k: v for k, v in output_dict.items() if isinstance(v, torch.Tensor)}
|
|
output_dict["loss"] = loss
|
|
else:
|
|
output_dict = {"loss": loss}
|
|
|
|
loss.backward()
|
|
grad_stats = {}
|
|
for key, param in policy.named_parameters():
|
|
if param.requires_grad:
|
|
grad_stats[f"{key}_mean"] = param.grad.mean()
|
|
grad_stats[f"{key}_std"] = (
|
|
param.grad.std() if param.grad.numel() > 1 else torch.tensor(float(0.0))
|
|
)
|
|
|
|
optimizer.step()
|
|
param_stats = {}
|
|
for key, param in policy.named_parameters():
|
|
param_stats[f"{key}_mean"] = param.mean()
|
|
param_stats[f"{key}_std"] = param.std() if param.numel() > 1 else torch.tensor(float(0.0))
|
|
|
|
optimizer.zero_grad()
|
|
policy.reset()
|
|
|
|
# HACK: We reload a batch with no delta_indices as `select_action` won't expect a timestamps dimension
|
|
# We simulate having an environment using a dataset by setting delta_indices to None and dropping tensors
|
|
# indicating padding (those ending with "_is_pad")
|
|
dataset.delta_indices = None
|
|
batch = next(iter(dataloader))
|
|
obs = {}
|
|
for k in batch:
|
|
# TODO: regenerate the safetensors
|
|
# for backward compatibility
|
|
if k.endswith("_is_pad"):
|
|
continue
|
|
# for backward compatibility
|
|
if k == "task":
|
|
continue
|
|
if k.startswith("observation"):
|
|
obs[k] = batch[k]
|
|
|
|
if hasattr(train_cfg.policy, "n_action_steps"):
|
|
actions_queue = train_cfg.policy.n_action_steps
|
|
else:
|
|
actions_queue = train_cfg.policy.n_action_repeats
|
|
|
|
actions = {str(i): policy.select_action(obs).contiguous() for i in range(actions_queue)}
|
|
return output_dict, grad_stats, param_stats, actions
|
|
|
|
|
|
def save_policy_to_safetensors(output_dir: Path, ds_repo_id: str, policy_name: str, policy_kwargs: dict):
|
|
if output_dir.exists():
|
|
print(f"Overwrite existing safetensors in '{output_dir}':")
|
|
print(f" - Validate with: `git add {output_dir}`")
|
|
print(f" - Revert with: `git checkout -- {output_dir}`")
|
|
shutil.rmtree(output_dir)
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
output_dict, grad_stats, param_stats, actions = get_policy_stats(ds_repo_id, policy_name, policy_kwargs)
|
|
save_file(output_dict, output_dir / "output_dict.safetensors")
|
|
save_file(grad_stats, output_dir / "grad_stats.safetensors")
|
|
save_file(param_stats, output_dir / "param_stats.safetensors")
|
|
save_file(actions, output_dir / "actions.safetensors")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
artifacts_cfg = [
|
|
("lerobot/xarm_lift_medium", "tdmpc", {"use_mpc": False}, "use_policy"),
|
|
("lerobot/xarm_lift_medium", "tdmpc", {"use_mpc": True}, "use_mpc"),
|
|
(
|
|
"lerobot/pusht",
|
|
"diffusion",
|
|
{
|
|
"n_action_steps": 8,
|
|
"num_inference_steps": 10,
|
|
"down_dims": [128, 256, 512],
|
|
},
|
|
"",
|
|
),
|
|
("lerobot/aloha_sim_insertion_human", "act", {"n_action_steps": 10}, ""),
|
|
(
|
|
"lerobot/aloha_sim_insertion_human",
|
|
"act",
|
|
{"n_action_steps": 1000, "chunk_size": 1000},
|
|
"1000_steps",
|
|
),
|
|
]
|
|
if len(artifacts_cfg) == 0:
|
|
raise RuntimeError("No policies were provided!")
|
|
for ds_repo_id, policy, policy_kwargs, file_name_extra in artifacts_cfg:
|
|
ds_name = ds_repo_id.split("/")[-1]
|
|
output_dir = Path("tests/data/save_policy_to_safetensors") / f"{ds_name}_{policy}_{file_name_extra}"
|
|
save_policy_to_safetensors(output_dir, ds_repo_id, policy, policy_kwargs)
|