lerobot/lerobot/scripts/train_sac.py

587 lines
22 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import functools
from pprint import pformat
import random
from typing import Optional, Sequence, TypedDict, Callable
import hydra
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# TODO: Remove the import of maniskill
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.envs.factory import make_env, make_maniskill_env
from lerobot.common.envs.utils import preprocess_observation, preprocess_maniskill_observation
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.sac.modeling_sac import SACPolicy
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
init_hydra_config,
init_logging,
set_global_seed,
)
from lerobot.scripts.eval import eval_policy
def make_optimizers_and_scheduler(cfg, policy):
optimizer_actor = torch.optim.Adam(
# NOTE: Handle the case of shared encoder where the encoder weights are not optimized with the gradient of the actor
params=policy.actor.parameters_to_optimize,
lr=policy.config.actor_lr,
)
optimizer_critic = torch.optim.Adam(
params=policy.critic_ensemble.parameters(), lr=policy.config.critic_lr
)
# We wrap policy log temperature in list because this is a torch tensor and not a nn.Module
optimizer_temperature = torch.optim.Adam(params=[policy.log_alpha], lr=policy.config.critic_lr)
lr_scheduler = None
optimizers = {
"actor": optimizer_actor,
"critic": optimizer_critic,
"temperature": optimizer_temperature,
}
return optimizers, lr_scheduler
class Transition(TypedDict):
state: dict[str, torch.Tensor]
action: torch.Tensor
reward: float
next_state: dict[str, torch.Tensor]
done: bool
complementary_info: dict[str, torch.Tensor] = None
class BatchTransition(TypedDict):
state: dict[str, torch.Tensor]
action: torch.Tensor
reward: torch.Tensor
next_state: dict[str, torch.Tensor]
done: torch.Tensor
def random_crop_vectorized(images: torch.Tensor, output_size: tuple) -> torch.Tensor:
"""
Perform a per-image random crop over a batch of images in a vectorized way.
(Same as shown previously.)
"""
B, C, H, W = images.shape
crop_h, crop_w = output_size
if crop_h > H or crop_w > W:
raise ValueError(
f"Requested crop size ({crop_h}, {crop_w}) is bigger than the image size ({H}, {W})."
)
tops = torch.randint(0, H - crop_h + 1, (B,), device=images.device)
lefts = torch.randint(0, W - crop_w + 1, (B,), device=images.device)
rows = torch.arange(crop_h, device=images.device).unsqueeze(0) + tops.unsqueeze(1)
cols = torch.arange(crop_w, device=images.device).unsqueeze(0) + lefts.unsqueeze(1)
rows = rows.unsqueeze(2).expand(-1, -1, crop_w) # (B, crop_h, crop_w)
cols = cols.unsqueeze(1).expand(-1, crop_h, -1) # (B, crop_h, crop_w)
images_hwcn = images.permute(0, 2, 3, 1) # (B, H, W, C)
# Gather pixels
cropped_hwcn = images_hwcn[torch.arange(B, device=images.device).view(B, 1, 1), rows, cols, :]
# cropped_hwcn => (B, crop_h, crop_w, C)
cropped = cropped_hwcn.permute(0, 3, 1, 2) # (B, C, crop_h, crop_w)
return cropped
def random_shift(images: torch.Tensor, pad: int = 4):
"""Vectorized random shift, imgs: (B,C,H,W), pad: #pixels"""
_, _, h, w = images.shape
images = F.pad(input=images, pad=(pad, pad, pad, pad), mode="replicate")
return random_crop_vectorized(images=images, output_size=(h, w))
class ReplayBuffer:
def __init__(
self,
capacity: int,
device: str = "cuda:0",
state_keys: Optional[Sequence[str]] = None,
image_augmentation_function: Optional[Callable] = None,
use_drq: bool = True,
):
"""
Args:
capacity (int): Maximum number of transitions to store in the buffer.
device (str): The device where the tensors will be moved ("cuda:0" or "cpu").
state_keys (List[str]): The list of keys that appear in `state` and `next_state`.
image_augmentation_function (Optional[Callable]): A function that takes a batch of images
and returns a batch of augmented images. If None, a default augmentation function is used.
use_drq (bool): Whether to use the default DRQ image augmentation style, when sampling in the buffer.
"""
self.capacity = capacity
self.device = device
self.memory: list[Transition] = []
self.position = 0
# If no state_keys provided, default to an empty list
# (you can handle this differently if needed)
self.state_keys = state_keys if state_keys is not None else []
if image_augmentation_function is None:
self.image_augmentation_function = functools.partial(random_shift, pad=4)
self.use_drq = use_drq
def add(
self,
state: dict[str, torch.Tensor],
action: torch.Tensor,
reward: float,
next_state: dict[str, torch.Tensor],
done: bool,
complementary_info: Optional[dict[str, torch.Tensor]] = None,
):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
# Create and store the Transition
self.memory[self.position] = Transition(
state=state,
action=action,
reward=reward,
next_state=next_state,
done=done,
complementary_info=complementary_info,
)
self.position: int = (self.position + 1) % self.capacity
@classmethod
def from_lerobot_dataset(
cls,
lerobot_dataset: LeRobotDataset,
device: str = "cuda:0",
state_keys: Optional[Sequence[str]] = None,
) -> "ReplayBuffer":
"""
Convert a LeRobotDataset into a ReplayBuffer.
Args:
lerobot_dataset (LeRobotDataset): The dataset to convert.
device (str): The device . Defaults to "cuda:0".
state_keys (Optional[Sequence[str]], optional): The list of keys that appear in `state` and `next_state`.
Defaults to None.
Returns:
ReplayBuffer: The replay buffer with offline dataset transitions.
"""
# We convert the LeRobotDataset into a replay buffer, because it is more efficient to sample from
# a replay buffer than from a lerobot dataset.
replay_buffer = cls(capacity=len(lerobot_dataset), device=device, state_keys=state_keys)
list_transition = cls._lerobotdataset_to_transitions(dataset=lerobot_dataset, state_keys=state_keys)
# Fill the replay buffer with the lerobot dataset transitions
for data in list_transition:
replay_buffer.add(
state=data["state"],
action=data["action"],
reward=data["reward"],
next_state=data["next_state"],
done=data["done"],
)
return replay_buffer
@staticmethod
def _lerobotdataset_to_transitions(
dataset: LeRobotDataset,
state_keys: Optional[Sequence[str]] = None,
) -> list[Transition]:
"""
Convert a LeRobotDataset into a list of RL (s, a, r, s', done) transitions.
Args:
dataset (LeRobotDataset):
The dataset to convert. Each item in the dataset is expected to have
at least the following keys:
{
"action": ...
"next.reward": ...
"next.done": ...
"episode_index": ...
}
plus whatever your 'state_keys' specify.
state_keys (Optional[Sequence[str]]):
The dataset keys to include in 'state' and 'next_state'. Their names
will be kept as-is in the output transitions. E.g.
["observation.state", "observation.environment_state"].
If None, you must handle or define default keys.
Returns:
transitions (List[Transition]):
A list of Transition dictionaries with the same length as `dataset`.
"""
# If not provided, you can either raise an error or define a default:
if state_keys is None:
raise ValueError("You must provide a list of keys in `state_keys` that define your 'state'.")
transitions: list[Transition] = []
num_frames = len(dataset)
for i in tqdm(range(num_frames)):
current_sample = dataset[i]
# ----- 1) Current state -----
current_state: dict[str, torch.Tensor] = {}
for key in state_keys:
val = current_sample[key]
current_state[key] = val.unsqueeze(0) # Add batch dimension
# ----- 2) Action -----
action = current_sample["action"].unsqueeze(0) # Add batch dimension
# ----- 3) Reward and done -----
reward = float(current_sample["next.reward"].item()) # ensure float
done = bool(current_sample["next.done"].item()) # ensure bool
# ----- 4) Next state -----
# If not done and the next sample is in the same episode, we pull the next sample's state.
# Otherwise (done=True or next sample crosses to a new episode), next_state = current_state.
next_state = current_state # default
if not done and (i < num_frames - 1):
next_sample = dataset[i + 1]
if next_sample["episode_index"] == current_sample["episode_index"]:
# Build next_state from the same keys
next_state_data: dict[str, torch.Tensor] = {}
for key in state_keys:
val = next_sample[key]
next_state_data[key] = val.unsqueeze(0) # Add batch dimension
next_state = next_state_data
# ----- Construct the Transition -----
transition = Transition(
state=current_state,
action=action,
reward=reward,
next_state=next_state,
done=done,
)
transitions.append(transition)
return transitions
def sample(self, batch_size: int) -> BatchTransition:
"""Sample a random batch of transitions and collate them into batched tensors."""
list_of_transitions = random.sample(self.memory, batch_size)
# -- Build batched states --
batch_state = {}
for key in self.state_keys:
batch_state[key] = torch.cat([t["state"][key] for t in list_of_transitions], dim=0).to(
self.device
)
if key.startswith("observation.image") and self.use_drq:
batch_state[key] = self.image_augmentation_function(batch_state[key])
# -- Build batched actions --
batch_actions = torch.cat([t["action"] for t in list_of_transitions]).to(self.device)
# -- Build batched rewards --
batch_rewards = torch.tensor([t["reward"] for t in list_of_transitions], dtype=torch.float32).to(
self.device
)
# -- Build batched next states --
batch_next_state = {}
for key in self.state_keys:
batch_next_state[key] = torch.cat([t["next_state"][key] for t in list_of_transitions], dim=0).to(
self.device
)
if key.startswith("observation.image") and self.use_drq:
batch_next_state[key] = self.image_augmentation_function(batch_next_state[key])
# -- Build batched dones --
batch_dones = torch.tensor([t["done"] for t in list_of_transitions], dtype=torch.float32).to(
self.device
)
batch_dones = torch.tensor([t["done"] for t in list_of_transitions], dtype=torch.float32).to(
self.device
)
# Return a BatchTransition typed dict
return BatchTransition(
state=batch_state,
action=batch_actions,
reward=batch_rewards,
next_state=batch_next_state,
done=batch_dones,
)
def concatenate_batch_transitions(
left_batch_transitions: BatchTransition, right_batch_transition: BatchTransition
) -> BatchTransition:
"""NOTE: Be careful it change the left_batch_transitions in place"""
left_batch_transitions["state"] = {
key: torch.cat([left_batch_transitions["state"][key], right_batch_transition["state"][key]], dim=0)
for key in left_batch_transitions["state"]
}
left_batch_transitions["action"] = torch.cat(
[left_batch_transitions["action"], right_batch_transition["action"]], dim=0
)
left_batch_transitions["reward"] = torch.cat(
[left_batch_transitions["reward"], right_batch_transition["reward"]], dim=0
)
left_batch_transitions["next_state"] = {
key: torch.cat(
[left_batch_transitions["next_state"][key], right_batch_transition["next_state"][key]], dim=0
)
for key in left_batch_transitions["next_state"]
}
left_batch_transitions["done"] = torch.cat(
[left_batch_transitions["done"], right_batch_transition["done"]], dim=0
)
return left_batch_transitions
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
init_logging()
logging.info(pformat(OmegaConf.to_container(cfg)))
# Create an env dedicated to online episodes collection from policy rollout.
# online_env = make_env(cfg, n_envs=cfg.training.online_rollout_batch_size)
# NOTE: Off policy algorithm are efficient enought to use a single environment
logging.info("make_env online")
# online_env = make_env(cfg, n_envs=1)
# TODO: Remove the import of maniskill and unifiy with make env
online_env = make_maniskill_env(cfg, n_envs=1)
if cfg.training.eval_freq > 0:
logging.info("make_env eval")
# eval_env = make_env(cfg, n_envs=1)
# TODO: Remove the import of maniskill and unifiy with make env
eval_env = make_maniskill_env(cfg, n_envs=1)
# TODO: Add a way to resume training
# log metrics to terminal and wandb
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
set_global_seed(cfg.seed)
# Check device is available
device = get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
logging.info("make_policy")
# TODO: At some point we should just need make sac policy
policy: SACPolicy = make_policy(
hydra_cfg=cfg,
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
# Hack: But if we do online traning, we do not need dataset_stats
dataset_stats=None,
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
device=device,
)
assert isinstance(policy, nn.Module)
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
# TODO: Handle resume
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.online_steps=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
obs, info = online_env.reset()
# HACK for maniskill
# obs = preprocess_observation(obs)
obs = preprocess_maniskill_observation(obs)
obs = {key: obs[key].to(device, non_blocking=True) for key in obs}
replay_buffer = ReplayBuffer(
capacity=cfg.training.online_buffer_capacity, device=device, state_keys=cfg.policy.input_shapes.keys()
)
batch_size = cfg.training.batch_size
if cfg.dataset_repo_id is not None:
logging.info("make_dataset offline buffer")
offline_dataset = make_dataset(cfg)
logging.info("Convertion to a offline replay buffer")
offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
offline_dataset, device=device, state_keys=cfg.policy.input_shapes.keys()
)
batch_size: int = batch_size // 2 # We will sample from both replay buffer
# NOTE: For the moment we will solely handle the case of a single environment
sum_reward_episode = 0
for interaction_step in range(cfg.training.online_steps):
# NOTE: At some point we should use a wrapper to handle the observation
if interaction_step >= cfg.training.online_step_before_learning:
action = policy.select_action(batch=obs)
next_obs, reward, done, truncated, info = online_env.step(action.cpu().numpy())
else:
action = online_env.action_space.sample()
next_obs, reward, done, truncated, info = online_env.step(action)
# HACK
action = torch.tensor(action, dtype=torch.float32).to(device, non_blocking=True)
# HACK: For maniskill
# next_obs = preprocess_observation(next_obs)
next_obs = preprocess_maniskill_observation(next_obs)
next_obs = {key: next_obs[key].to(device, non_blocking=True) for key in obs}
sum_reward_episode += float(reward[0])
# Because we are using a single environment
# we can safely assume that the episode is done
if done[0] or truncated[0]:
logging.info(f"Global step {interaction_step}: Episode reward: {sum_reward_episode}")
logger.log_dict({"Sum episode reward": sum_reward_episode}, interaction_step)
sum_reward_episode = 0
# HACK: This is for maniskill
logging.info(
f"global step {interaction_step}: episode success: {info['success'].float().item()} \n"
)
logger.log_dict({"Episode success": info["success"].float().item()}, interaction_step)
replay_buffer.add(
state=obs,
action=action,
reward=float(reward[0]),
next_state=next_obs,
done=done[0],
)
obs = next_obs
if interaction_step < cfg.training.online_step_before_learning:
continue
for _ in range(cfg.policy.utd_ratio - 1):
batch = replay_buffer.sample(batch_size)
if cfg.dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(batch, batch_offline)
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
optimizers["critic"].step()
batch = replay_buffer.sample(batch_size)
if cfg.dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(
left_batch_transitions=batch, right_batch_transition=batch_offline
)
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
optimizers["critic"].step()
training_infos = {}
training_infos["loss_critic"] = loss_critic.item()
if interaction_step % cfg.training.policy_update_freq == 0:
# TD3 Trick
for _ in range(cfg.training.policy_update_freq):
loss_actor = policy.compute_loss_actor(observations=observations)
optimizers["actor"].zero_grad()
loss_actor.backward()
optimizers["actor"].step()
training_infos["loss_actor"] = loss_actor.item()
loss_temperature = policy.compute_loss_temperature(observations=observations)
optimizers["temperature"].zero_grad()
loss_temperature.backward()
optimizers["temperature"].step()
training_infos["loss_temperature"] = loss_temperature.item()
if interaction_step % cfg.training.log_freq == 0:
logger.log_dict(training_infos, interaction_step, mode="train")
policy.update_target_networks()
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
if __name__ == "__main__":
train_cli()