lerobot/lerobot/scripts/push_dataset_to_hub.py

336 lines
11 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Use this script to convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub,
or store it locally. LeRobot dataset format is lightweight, fast to load from, and does not require any
installation of neural net specific packages like pytorch, tensorflow, jax.
Example:
```
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id pusht \
--raw-format pusht_zarr \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id xarm_lift_medium \
--raw-format xarm_pkl \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_sim_insertion_scripted \
--raw-format aloha_hdf5 \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id umi_cup_in_the_wild \
--raw-format umi_zarr \
--community-id lerobot \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
```
"""
import argparse
import json
import shutil
from pathlib import Path
import torch
from huggingface_hub import HfApi
from safetensors.torch import save_file
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import compute_stats
from lerobot.common.datasets.utils import flatten_dict
def get_from_raw_to_lerobot_format_fn(raw_format):
if raw_format == "pusht_zarr":
from lerobot.common.datasets.push_dataset_to_hub.pusht_zarr_format import from_raw_to_lerobot_format
elif raw_format == "umi_zarr":
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
elif raw_format == "aloha_hdf5":
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
elif raw_format == "aloha_dora":
from lerobot.common.datasets.push_dataset_to_hub.aloha_dora_format import from_raw_to_lerobot_format
elif raw_format == "xarm_pkl":
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import from_raw_to_lerobot_format
else:
raise ValueError(
f"The selected {raw_format} can't be found. Did you add it to `lerobot/scripts/push_dataset_to_hub.py::get_from_raw_to_lerobot_format_fn`?"
)
return from_raw_to_lerobot_format
def save_meta_data(info, stats, episode_data_index, meta_data_dir):
meta_data_dir.mkdir(parents=True, exist_ok=True)
# save info
info_path = meta_data_dir / "info.json"
with open(str(info_path), "w") as f:
json.dump(info, f, indent=4)
# save stats
stats_path = meta_data_dir / "stats.safetensors"
save_file(flatten_dict(stats), stats_path)
# save episode_data_index
episode_data_index = {key: torch.tensor(episode_data_index[key]) for key in episode_data_index}
ep_data_idx_path = meta_data_dir / "episode_data_index.safetensors"
save_file(episode_data_index, ep_data_idx_path)
def push_meta_data_to_hub(repo_id, meta_data_dir, revision):
"""Expect all meta data files to be all stored in a single "meta_data" directory.
On the hugging face repositery, they will be uploaded in a "meta_data" directory at the root.
"""
api = HfApi()
api.upload_folder(
folder_path=meta_data_dir,
path_in_repo="meta_data",
repo_id=repo_id,
revision=revision,
repo_type="dataset",
)
def push_videos_to_hub(repo_id, videos_dir, revision):
"""Expect mp4 files to be all stored in a single "videos" directory.
On the hugging face repositery, they will be uploaded in a "videos" directory at the root.
"""
api = HfApi()
api.upload_folder(
folder_path=videos_dir,
path_in_repo="videos",
repo_id=repo_id,
revision=revision,
repo_type="dataset",
allow_patterns="*.mp4",
)
def push_dataset_to_hub(
data_dir: Path,
dataset_id: str,
raw_format: str | None,
community_id: str,
revision: str,
dry_run: bool,
save_to_disk: bool,
tests_data_dir: Path,
save_tests_to_disk: bool,
fps: int | None,
video: bool,
batch_size: int,
num_workers: int,
debug: bool,
):
repo_id = f"{community_id}/{dataset_id}"
raw_dir = data_dir / f"{dataset_id}_raw"
out_dir = data_dir / repo_id
meta_data_dir = out_dir / "meta_data"
videos_dir = out_dir / "videos"
tests_out_dir = tests_data_dir / repo_id
tests_meta_data_dir = tests_out_dir / "meta_data"
tests_videos_dir = tests_out_dir / "videos"
if out_dir.exists():
shutil.rmtree(out_dir)
if tests_out_dir.exists() and save_tests_to_disk:
shutil.rmtree(tests_out_dir)
if not raw_dir.exists():
download_raw(raw_dir, dataset_id)
if raw_format is None:
# TODO(rcadene, adilzouitine): implement auto_find_raw_format
raise NotImplementedError()
# raw_format = auto_find_raw_format(raw_dir)
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
# convert dataset from original raw format to LeRobot format
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(raw_dir, out_dir, fps, video, debug)
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
version=revision,
hf_dataset=hf_dataset,
episode_data_index=episode_data_index,
info=info,
videos_dir=videos_dir,
)
stats = compute_stats(lerobot_dataset, batch_size, num_workers)
if save_to_disk:
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(out_dir / "train"))
if not dry_run or save_to_disk:
# mandatory for upload
save_meta_data(info, stats, episode_data_index, meta_data_dir)
if not dry_run:
hf_dataset.push_to_hub(repo_id, token=True, revision="main")
hf_dataset.push_to_hub(repo_id, token=True, revision=revision)
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
push_meta_data_to_hub(repo_id, meta_data_dir, revision=revision)
if video:
push_videos_to_hub(repo_id, videos_dir, revision="main")
push_videos_to_hub(repo_id, videos_dir, revision=revision)
if save_tests_to_disk:
# get the first episode
num_items_first_ep = episode_data_index["to"][0] - episode_data_index["from"][0]
test_hf_dataset = hf_dataset.select(range(num_items_first_ep))
test_hf_dataset = test_hf_dataset.with_format(None)
test_hf_dataset.save_to_disk(str(tests_out_dir / "train"))
save_meta_data(info, stats, episode_data_index, tests_meta_data_dir)
# copy videos of first episode to tests directory
episode_index = 0
tests_videos_dir.mkdir(parents=True, exist_ok=True)
for key in lerobot_dataset.video_frame_keys:
fname = f"{key}_episode_{episode_index:06d}.mp4"
shutil.copy(videos_dir / fname, tests_videos_dir / fname)
if not save_to_disk and out_dir.exists():
# remove possible temporary files remaining in the output directory
shutil.rmtree(out_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-dir",
type=Path,
required=True,
help="Root directory containing datasets (e.g. `data` or `tmp/data` or `/tmp/lerobot/data`).",
)
parser.add_argument(
"--dataset-id",
type=str,
required=True,
help="Name of the dataset (e.g. `pusht`, `aloha_sim_insertion_human`), which matches the folder where the data is stored (e.g. `data/pusht`).",
)
parser.add_argument(
"--raw-format",
type=str,
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`). If not provided, will be detected automatically.",
)
parser.add_argument(
"--community-id",
type=str,
default="lerobot",
help="Community or user ID under which the dataset will be hosted on the Hub.",
)
parser.add_argument(
"--revision",
type=str,
default=CODEBASE_VERSION,
help="Codebase version used to generate the dataset.",
)
parser.add_argument(
"--dry-run",
type=int,
default=0,
help="Run everything without uploading to hub, for testing purposes or storing a dataset locally.",
)
parser.add_argument(
"--save-to-disk",
type=int,
default=1,
help="Save the dataset in the directory specified by `--data-dir`.",
)
parser.add_argument(
"--tests-data-dir",
type=Path,
default="tests/data",
help="Directory containing tests artifacts datasets.",
)
parser.add_argument(
"--save-tests-to-disk",
type=int,
default=1,
help="Save the dataset with 1 episode used for unit tests in the directory specified by `--tests-data-dir`.",
)
parser.add_argument(
"--fps",
type=int,
help="Frame rate used to collect videos. If not provided, use the default one specified in the code.",
)
parser.add_argument(
"--video",
type=int,
default=1,
help="Convert each episode of the raw dataset to an mp4 video. This option allows 60 times lower disk space consumption and 25 faster loading time during training.",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size loaded by DataLoader for computing the dataset statistics.",
)
parser.add_argument(
"--num-workers",
type=int,
default=8,
help="Number of processes of Dataloader for computing the dataset statistics.",
)
parser.add_argument(
"--debug",
type=int,
default=0,
help="Debug mode process the first episode only.",
)
args = parser.parse_args()
push_dataset_to_hub(**vars(args))
if __name__ == "__main__":
main()