lerobot/README.md

1.8 KiB

LeRobot

Installation

Install dependencies using conda:

conda env create -f environment.yaml
conda activate lerobot

dev

python setup.py develop

Usage

Train

python lerobot/scripts/train.py \
--config-name=pusht hydra.job.name=pusht

Visualize offline buffer

python lerobot/scripts/visualize_dataset.py \
--config-name=pusht hydra.run.dir=tmp/$(date +"%Y_%m_%d")

Visualize online buffer / Eval

python lerobot/scripts/eval.py \
--config-name=pusht hydra.run.dir=tmp/$(date +"%Y_%m_%d")

TODO

  • priority update doesnt match FOWM or original paper
  • self.step=100000 should be updated at every step to adjust to horizon of planner
  • prefetch replay buffer to speedup training
  • parallelize env to speedup eval
  • clean checkpointing / loading
  • clean logging
  • clean config
  • clean hyperparameter tuning
  • add pusht
  • add aloha
  • add act
  • add diffusion
  • add aloha 2

Profile

Example

from torch.profiler import profile, record_function, ProfilerActivity

def trace_handler(prof):
    prof.export_chrome_trace(f"tmp/trace_schedule_{prof.step_num}.json")

with profile(
    activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
    schedule=torch.profiler.schedule(
        wait=2,
        warmup=2,
        active=3,
    ),
    on_trace_ready=trace_handler
) as prof:
    with record_function("eval_policy"):
        for i in range(num_episodes):
            prof.step()
python lerobot/scripts/eval.py \
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
eval_episodes=7

Contribute

style

isort lerobot && isort test && black lerobot && black test
pylint lerobot && pylint test  # not enforce for now