125 lines
4.6 KiB
Python
125 lines
4.6 KiB
Python
"""
|
|
Tests meant to be used locally and launched manually.
|
|
|
|
Example usage:
|
|
```bash
|
|
pytest -sx tests/test_robots.py::test_robot
|
|
```
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from lerobot import available_robots
|
|
from lerobot.common.robot_devices.robots.factory import make_robot as make_robot_from_cfg
|
|
from lerobot.common.robot_devices.robots.utils import Robot
|
|
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
|
from lerobot.common.utils.utils import init_hydra_config
|
|
from tests.utils import ROBOT_CONFIG_PATH_TEMPLATE, require_robot
|
|
|
|
|
|
def make_robot(robot_type: str, overrides: list[str] | None = None) -> Robot:
|
|
config_path = ROBOT_CONFIG_PATH_TEMPLATE.format(robot=robot_type)
|
|
robot_cfg = init_hydra_config(config_path, overrides)
|
|
robot = make_robot_from_cfg(robot_cfg)
|
|
return robot
|
|
|
|
|
|
@pytest.mark.parametrize("robot_type", available_robots)
|
|
@require_robot
|
|
def test_robot(tmpdir, request, robot_type):
|
|
# TODO(rcadene): measure fps in nightly?
|
|
# TODO(rcadene): test logs
|
|
# TODO(rcadene): add compatibility with other robots
|
|
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
|
|
|
|
# Save calibration preset
|
|
tmpdir = Path(tmpdir)
|
|
calibration_dir = tmpdir / robot_type
|
|
|
|
# Test connecting without devices raises an error
|
|
robot = ManipulatorRobot()
|
|
with pytest.raises(ValueError):
|
|
robot.connect()
|
|
del robot
|
|
|
|
# Test using robot before connecting raises an error
|
|
robot = ManipulatorRobot()
|
|
with pytest.raises(RobotDeviceNotConnectedError):
|
|
robot.teleop_step()
|
|
with pytest.raises(RobotDeviceNotConnectedError):
|
|
robot.teleop_step(record_data=True)
|
|
with pytest.raises(RobotDeviceNotConnectedError):
|
|
robot.capture_observation()
|
|
with pytest.raises(RobotDeviceNotConnectedError):
|
|
robot.send_action(None)
|
|
with pytest.raises(RobotDeviceNotConnectedError):
|
|
robot.disconnect()
|
|
|
|
# Test deleting the object without connecting first
|
|
del robot
|
|
|
|
# Test connecting
|
|
robot = make_robot(robot_type, overrides=[f"calibration_dir={calibration_dir}"])
|
|
robot.connect() # run the manual calibration precedure
|
|
assert robot.is_connected
|
|
|
|
# Test connecting twice raises an error
|
|
with pytest.raises(RobotDeviceAlreadyConnectedError):
|
|
robot.connect()
|
|
|
|
# Test disconnecting with `__del__`
|
|
del robot
|
|
|
|
# Test teleop can run
|
|
robot = make_robot(robot_type, overrides=[f"calibration_dir={calibration_dir}"])
|
|
robot.calibration_dir = calibration_dir
|
|
robot.connect()
|
|
robot.teleop_step()
|
|
|
|
# Test data recorded during teleop are well formated
|
|
observation, action = robot.teleop_step(record_data=True)
|
|
# State
|
|
assert "observation.state" in observation
|
|
assert isinstance(observation["observation.state"], torch.Tensor)
|
|
assert observation["observation.state"].ndim == 1
|
|
dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
|
|
assert observation["observation.state"].shape[0] == dim_state
|
|
# Cameras
|
|
for name in robot.cameras:
|
|
assert f"observation.images.{name}" in observation
|
|
assert isinstance(observation[f"observation.images.{name}"], torch.Tensor)
|
|
assert observation[f"observation.images.{name}"].ndim == 3
|
|
# Action
|
|
assert "action" in action
|
|
assert isinstance(action["action"], torch.Tensor)
|
|
assert action["action"].ndim == 1
|
|
dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
|
|
assert action["action"].shape[0] == dim_action
|
|
# TODO(rcadene): test if observation and action data are returned as expected
|
|
|
|
# Test capture_observation can run and observation returned are the same (since the arm didnt move)
|
|
captured_observation = robot.capture_observation()
|
|
assert set(captured_observation.keys()) == set(observation.keys())
|
|
for name in captured_observation:
|
|
if "image" in name:
|
|
# TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames
|
|
continue
|
|
assert torch.allclose(captured_observation[name], observation[name], atol=1)
|
|
|
|
# Test send_action can run
|
|
robot.send_action(action["action"])
|
|
|
|
# Test disconnecting
|
|
robot.disconnect()
|
|
assert not robot.is_connected
|
|
for name in robot.follower_arms:
|
|
assert not robot.follower_arms[name].is_connected
|
|
for name in robot.leader_arms:
|
|
assert not robot.leader_arms[name].is_connected
|
|
for name in robot.cameras:
|
|
assert not robot.cameras[name].is_connected
|
|
del robot
|