455 lines
16 KiB
Python
455 lines
16 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
|
|
|
|
Note: The last frame of the episode doesnt always correspond to a final state.
|
|
That's because our datasets are composed of transition from state to state up to
|
|
the antepenultimate state associated to the ultimate action to arrive in the final state.
|
|
However, there might not be a transition from a final state to another state.
|
|
|
|
Note: This script aims to visualize the data used to train the neural networks.
|
|
~What you see is what you get~. When visualizing image modality, it is often expected to observe
|
|
lossly compression artifacts since these images have been decoded from compressed mp4 videos to
|
|
save disk space. The compression factor applied has been tuned to not affect success rate.
|
|
|
|
Example of usage:
|
|
|
|
- Visualize data stored on a local machine:
|
|
```bash
|
|
local$ python lerobot/scripts/visualize_dataset_html.py \
|
|
--repo-id lerobot/pusht
|
|
|
|
local$ open http://localhost:9090
|
|
```
|
|
|
|
- Visualize data stored on a distant machine with a local viewer:
|
|
```bash
|
|
distant$ python lerobot/scripts/visualize_dataset_html.py \
|
|
--repo-id lerobot/pusht
|
|
|
|
local$ ssh -L 9090:localhost:9090 distant # create a ssh tunnel
|
|
local$ open http://localhost:9090
|
|
```
|
|
|
|
- Select episodes to visualize:
|
|
```bash
|
|
python lerobot/scripts/visualize_dataset_html.py \
|
|
--repo-id lerobot/pusht \
|
|
--episodes 7 3 5 1 4
|
|
```
|
|
"""
|
|
|
|
import argparse
|
|
import csv
|
|
import json
|
|
import logging
|
|
import re
|
|
import shutil
|
|
import tempfile
|
|
from io import StringIO
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import requests
|
|
from flask import Flask, redirect, render_template, request, url_for
|
|
|
|
from lerobot import available_datasets
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
|
from lerobot.common.datasets.utils import IterableNamespace
|
|
from lerobot.common.utils.utils import init_logging
|
|
|
|
|
|
def run_server(
|
|
dataset: LeRobotDataset | IterableNamespace | None,
|
|
episodes: list[int] | None,
|
|
host: str,
|
|
port: str,
|
|
static_folder: Path,
|
|
template_folder: Path,
|
|
):
|
|
app = Flask(__name__, static_folder=static_folder.resolve(), template_folder=template_folder.resolve())
|
|
app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache
|
|
|
|
@app.route("/")
|
|
def hommepage(dataset=dataset):
|
|
if dataset:
|
|
dataset_namespace, dataset_name = dataset.repo_id.split("/")
|
|
return redirect(
|
|
url_for(
|
|
"show_episode",
|
|
dataset_namespace=dataset_namespace,
|
|
dataset_name=dataset_name,
|
|
episode_id=0,
|
|
)
|
|
)
|
|
|
|
dataset_param, episode_param = None, None
|
|
all_params = request.args
|
|
if "dataset" in all_params:
|
|
dataset_param = all_params["dataset"]
|
|
if "episode" in all_params:
|
|
episode_param = int(all_params["episode"])
|
|
|
|
if dataset_param:
|
|
dataset_namespace, dataset_name = dataset_param.split("/")
|
|
return redirect(
|
|
url_for(
|
|
"show_episode",
|
|
dataset_namespace=dataset_namespace,
|
|
dataset_name=dataset_name,
|
|
episode_id=episode_param if episode_param is not None else 0,
|
|
)
|
|
)
|
|
|
|
featured_datasets = [
|
|
"lerobot/aloha_static_cups_open",
|
|
"lerobot/columbia_cairlab_pusht_real",
|
|
"lerobot/taco_play",
|
|
]
|
|
return render_template(
|
|
"visualize_dataset_homepage.html",
|
|
featured_datasets=featured_datasets,
|
|
lerobot_datasets=available_datasets,
|
|
)
|
|
|
|
@app.route("/<string:dataset_namespace>/<string:dataset_name>")
|
|
def show_first_episode(dataset_namespace, dataset_name):
|
|
first_episode_id = 0
|
|
return redirect(
|
|
url_for(
|
|
"show_episode",
|
|
dataset_namespace=dataset_namespace,
|
|
dataset_name=dataset_name,
|
|
episode_id=first_episode_id,
|
|
)
|
|
)
|
|
|
|
@app.route("/<string:dataset_namespace>/<string:dataset_name>/episode_<int:episode_id>")
|
|
def show_episode(dataset_namespace, dataset_name, episode_id, dataset=dataset, episodes=episodes):
|
|
repo_id = f"{dataset_namespace}/{dataset_name}"
|
|
try:
|
|
if dataset is None:
|
|
dataset = get_dataset_info(repo_id)
|
|
except FileNotFoundError:
|
|
return (
|
|
"Make sure to convert your LeRobotDataset to v2 & above. See how to convert your dataset at https://github.com/huggingface/lerobot/pull/461",
|
|
400,
|
|
)
|
|
dataset_version = (
|
|
str(dataset.meta._version) if isinstance(dataset, LeRobotDataset) else dataset.codebase_version
|
|
)
|
|
match = re.search(r"v(\d+)\.", dataset_version)
|
|
if match:
|
|
major_version = int(match.group(1))
|
|
if major_version < 2:
|
|
return "Make sure to convert your LeRobotDataset to v2 & above."
|
|
|
|
episode_data_csv_str, columns = get_episode_data(dataset, episode_id)
|
|
dataset_info = {
|
|
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
|
"num_samples": dataset.num_frames
|
|
if isinstance(dataset, LeRobotDataset)
|
|
else dataset.total_frames,
|
|
"num_episodes": dataset.num_episodes
|
|
if isinstance(dataset, LeRobotDataset)
|
|
else dataset.total_episodes,
|
|
"fps": dataset.fps,
|
|
}
|
|
if isinstance(dataset, LeRobotDataset):
|
|
video_paths = [
|
|
dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys
|
|
]
|
|
videos_info = [
|
|
{"url": url_for("static", filename=video_path), "filename": video_path.parent.name}
|
|
for video_path in video_paths
|
|
]
|
|
tasks = dataset.meta.episodes[episode_id]["tasks"]
|
|
else:
|
|
video_keys = [key for key, ft in dataset.features.items() if ft["dtype"] == "video"]
|
|
videos_info = [
|
|
{
|
|
"url": f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
|
|
+ dataset.video_path.format(
|
|
episode_chunk=int(episode_id) // dataset.chunks_size,
|
|
video_key=video_key,
|
|
episode_index=episode_id,
|
|
),
|
|
"filename": video_key,
|
|
}
|
|
for video_key in video_keys
|
|
]
|
|
|
|
response = requests.get(
|
|
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl", timeout=5
|
|
)
|
|
response.raise_for_status()
|
|
# Split into lines and parse each line as JSON
|
|
tasks_jsonl = [json.loads(line) for line in response.text.splitlines() if line.strip()]
|
|
|
|
filtered_tasks_jsonl = [row for row in tasks_jsonl if row["episode_index"] == episode_id]
|
|
tasks = filtered_tasks_jsonl[0]["tasks"]
|
|
|
|
videos_info[0]["language_instruction"] = tasks
|
|
|
|
if episodes is None:
|
|
episodes = list(
|
|
range(dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes)
|
|
)
|
|
|
|
return render_template(
|
|
"visualize_dataset_template.html",
|
|
episode_id=episode_id,
|
|
episodes=episodes,
|
|
dataset_info=dataset_info,
|
|
videos_info=videos_info,
|
|
episode_data_csv_str=episode_data_csv_str,
|
|
columns=columns,
|
|
)
|
|
|
|
app.run(host=host, port=port)
|
|
|
|
|
|
def get_ep_csv_fname(episode_id: int):
|
|
ep_csv_fname = f"episode_{episode_id}.csv"
|
|
return ep_csv_fname
|
|
|
|
|
|
def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index):
|
|
"""Get a csv str containing timeseries data of an episode (e.g. state and action).
|
|
This file will be loaded by Dygraph javascript to plot data in real time."""
|
|
columns = []
|
|
|
|
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"]
|
|
selected_columns.remove("timestamp")
|
|
|
|
# init header of csv with state and action names
|
|
header = ["timestamp"]
|
|
|
|
for column_name in selected_columns:
|
|
dim_state = (
|
|
dataset.meta.shapes[column_name][0]
|
|
if isinstance(dataset, LeRobotDataset)
|
|
else dataset.features[column_name].shape[0]
|
|
)
|
|
|
|
if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]:
|
|
column_names = dataset.features[column_name]["names"]
|
|
while not isinstance(column_names, list):
|
|
column_names = list(column_names.values())[0]
|
|
else:
|
|
column_names = [f"{column_name}_{i}" for i in range(dim_state)]
|
|
columns.append({"key": column_name, "value": column_names})
|
|
|
|
header += column_names
|
|
|
|
selected_columns.insert(0, "timestamp")
|
|
|
|
if isinstance(dataset, LeRobotDataset):
|
|
from_idx = dataset.episode_data_index["from"][episode_index]
|
|
to_idx = dataset.episode_data_index["to"][episode_index]
|
|
data = (
|
|
dataset.hf_dataset.select(range(from_idx, to_idx))
|
|
.select_columns(selected_columns)
|
|
.with_format("pandas")
|
|
)
|
|
else:
|
|
repo_id = dataset.repo_id
|
|
|
|
url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format(
|
|
episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index
|
|
)
|
|
df = pd.read_parquet(url)
|
|
data = df[selected_columns] # Select specific columns
|
|
|
|
rows = np.hstack(
|
|
(
|
|
np.expand_dims(data["timestamp"], axis=1),
|
|
*[np.vstack(data[col]) for col in selected_columns[1:]],
|
|
)
|
|
).tolist()
|
|
|
|
# Convert data to CSV string
|
|
csv_buffer = StringIO()
|
|
csv_writer = csv.writer(csv_buffer)
|
|
# Write header
|
|
csv_writer.writerow(header)
|
|
# Write data rows
|
|
csv_writer.writerows(rows)
|
|
csv_string = csv_buffer.getvalue()
|
|
|
|
return csv_string, columns
|
|
|
|
|
|
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
|
# get first frame of episode (hack to get video_path of the episode)
|
|
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
|
|
return [
|
|
dataset.hf_dataset.select_columns(key)[first_frame_idx][key]["path"]
|
|
for key in dataset.meta.video_keys
|
|
]
|
|
|
|
|
|
def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
|
# check if the dataset has language instructions
|
|
if "language_instruction" not in dataset.features:
|
|
return None
|
|
|
|
# get first frame index
|
|
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
|
|
|
|
language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"]
|
|
# TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored
|
|
# with the tf.tensor appearing in the string
|
|
return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)")
|
|
|
|
|
|
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
|
response = requests.get(
|
|
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json", timeout=5
|
|
)
|
|
response.raise_for_status() # Raises an HTTPError for bad responses
|
|
dataset_info = response.json()
|
|
dataset_info["repo_id"] = repo_id
|
|
return IterableNamespace(dataset_info)
|
|
|
|
|
|
def visualize_dataset_html(
|
|
dataset: LeRobotDataset | None,
|
|
episodes: list[int] | None = None,
|
|
output_dir: Path | None = None,
|
|
serve: bool = True,
|
|
host: str = "127.0.0.1",
|
|
port: int = 9090,
|
|
force_override: bool = False,
|
|
) -> Path | None:
|
|
init_logging()
|
|
|
|
template_dir = Path(__file__).resolve().parent.parent / "templates"
|
|
|
|
if output_dir is None:
|
|
# Create a temporary directory that will be automatically cleaned up
|
|
output_dir = tempfile.mkdtemp(prefix="lerobot_visualize_dataset_")
|
|
|
|
output_dir = Path(output_dir)
|
|
if output_dir.exists():
|
|
if force_override:
|
|
shutil.rmtree(output_dir)
|
|
else:
|
|
logging.info(f"Output directory already exists. Loading from it: '{output_dir}'")
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
static_dir = output_dir / "static"
|
|
static_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if dataset is None:
|
|
if serve:
|
|
run_server(
|
|
dataset=None,
|
|
episodes=None,
|
|
host=host,
|
|
port=port,
|
|
static_folder=static_dir,
|
|
template_folder=template_dir,
|
|
)
|
|
else:
|
|
# Create a simlink from the dataset video folder containing mp4 files to the output directory
|
|
# so that the http server can get access to the mp4 files.
|
|
if isinstance(dataset, LeRobotDataset):
|
|
ln_videos_dir = static_dir / "videos"
|
|
if not ln_videos_dir.exists():
|
|
ln_videos_dir.symlink_to((dataset.root / "videos").resolve())
|
|
|
|
if serve:
|
|
run_server(dataset, episodes, host, port, static_dir, template_dir)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--repo-id",
|
|
type=str,
|
|
default=None,
|
|
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
|
|
)
|
|
parser.add_argument(
|
|
"--root",
|
|
type=Path,
|
|
default=None,
|
|
help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.",
|
|
)
|
|
parser.add_argument(
|
|
"--load-from-hf-hub",
|
|
type=int,
|
|
default=0,
|
|
help="Load videos and parquet files from HF Hub rather than local system.",
|
|
)
|
|
parser.add_argument(
|
|
"--episodes",
|
|
type=int,
|
|
nargs="*",
|
|
default=None,
|
|
help="Episode indices to visualize (e.g. `0 1 5 6` to load episodes of index 0, 1, 5 and 6). By default loads all episodes.",
|
|
)
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=Path,
|
|
default=None,
|
|
help="Directory path to write html files and kickoff a web server. By default write them to 'outputs/visualize_dataset/REPO_ID'.",
|
|
)
|
|
parser.add_argument(
|
|
"--serve",
|
|
type=int,
|
|
default=1,
|
|
help="Launch web server.",
|
|
)
|
|
parser.add_argument(
|
|
"--host",
|
|
type=str,
|
|
default="127.0.0.1",
|
|
help="Web host used by the http server.",
|
|
)
|
|
parser.add_argument(
|
|
"--port",
|
|
type=int,
|
|
default=9090,
|
|
help="Web port used by the http server.",
|
|
)
|
|
parser.add_argument(
|
|
"--force-override",
|
|
type=int,
|
|
default=0,
|
|
help="Delete the output directory if it exists already.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
kwargs = vars(args)
|
|
repo_id = kwargs.pop("repo_id")
|
|
load_from_hf_hub = kwargs.pop("load_from_hf_hub")
|
|
root = kwargs.pop("root")
|
|
|
|
dataset = None
|
|
if repo_id:
|
|
dataset = LeRobotDataset(repo_id, root=root) if not load_from_hf_hub else get_dataset_info(repo_id)
|
|
|
|
visualize_dataset_html(dataset, **vars(args))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|