lerobot/lerobot/scripts/server/end_effector_control_utils.py

763 lines
28 KiB
Python

import argparse
import logging
import time
import numpy as np
import torch
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.utils import init_hydra_config
from lerobot.scripts.server.kinematics import RobotKinematics
logging.basicConfig(level=logging.INFO)
class InputController:
"""Base class for input controllers that generate motion deltas."""
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
"""
Initialize the controller.
Args:
x_step_size: Base movement step size in meters
y_step_size: Base movement step size in meters
z_step_size: Base movement step size in meters
"""
self.x_step_size = x_step_size
self.y_step_size = y_step_size
self.z_step_size = z_step_size
self.running = True
self.episode_end_status = None # None, "success", or "failure"
def start(self):
"""Start the controller and initialize resources."""
pass
def stop(self):
"""Stop the controller and release resources."""
pass
def get_deltas(self):
"""Get the current movement deltas (dx, dy, dz) in meters."""
return 0.0, 0.0, 0.0
def should_quit(self):
"""Return True if the user has requested to quit."""
return not self.running
def update(self):
"""Update controller state - call this once per frame."""
pass
def __enter__(self):
"""Support for use in 'with' statements."""
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Ensure resources are released when exiting 'with' block."""
self.stop()
def get_episode_end_status(self):
"""
Get the current episode end status.
Returns:
None if episode should continue, "success" or "failure" otherwise
"""
status = self.episode_end_status
self.episode_end_status = None # Reset after reading
return status
class KeyboardController(InputController):
"""Generate motion deltas from keyboard input."""
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01):
super().__init__(x_step_size, y_step_size, z_step_size)
self.key_states = {
"forward_x": False,
"backward_x": False,
"forward_y": False,
"backward_y": False,
"forward_z": False,
"backward_z": False,
"quit": False,
"success": False,
"failure": False,
}
self.listener = None
def start(self):
"""Start the keyboard listener."""
from pynput import keyboard
def on_press(key):
try:
if key == keyboard.Key.up:
self.key_states["forward_x"] = True
elif key == keyboard.Key.down:
self.key_states["backward_x"] = True
elif key == keyboard.Key.left:
self.key_states["forward_y"] = True
elif key == keyboard.Key.right:
self.key_states["backward_y"] = True
elif key == keyboard.Key.shift:
self.key_states["backward_z"] = True
elif key == keyboard.Key.shift_r:
self.key_states["forward_z"] = True
elif key == keyboard.Key.esc:
self.key_states["quit"] = True
self.running = False
return False
elif key == keyboard.Key.enter:
self.key_states["success"] = True
self.episode_end_status = "success"
elif key == keyboard.Key.backspace:
self.key_states["failure"] = True
self.episode_end_status = "failure"
except AttributeError:
pass
def on_release(key):
try:
if key == keyboard.Key.up:
self.key_states["forward_x"] = False
elif key == keyboard.Key.down:
self.key_states["backward_x"] = False
elif key == keyboard.Key.left:
self.key_states["forward_y"] = False
elif key == keyboard.Key.right:
self.key_states["backward_y"] = False
elif key == keyboard.Key.shift:
self.key_states["backward_z"] = False
elif key == keyboard.Key.shift_r:
self.key_states["forward_z"] = False
elif key == keyboard.Key.enter:
self.key_states["success"] = False
elif key == keyboard.Key.backspace:
self.key_states["failure"] = False
except AttributeError:
pass
self.listener = keyboard.Listener(on_press=on_press, on_release=on_release)
self.listener.start()
print("Keyboard controls:")
print(" Arrow keys: Move in X-Y plane")
print(" Shift and Shift_R: Move in Z axis")
print(" Enter: End episode with SUCCESS")
print(" Backspace: End episode with FAILURE")
print(" ESC: Exit")
def stop(self):
"""Stop the keyboard listener."""
if self.listener and self.listener.is_alive():
self.listener.stop()
def get_deltas(self):
"""Get the current movement deltas from keyboard state."""
delta_x = delta_y = delta_z = 0.0
if self.key_states["forward_x"]:
delta_x += self.x_step_size
if self.key_states["backward_x"]:
delta_x -= self.x_step_size
if self.key_states["forward_y"]:
delta_y += self.y_step_size
if self.key_states["backward_y"]:
delta_y -= self.y_step_size
if self.key_states["forward_z"]:
delta_z += self.z_step_size
if self.key_states["backward_z"]:
delta_z -= self.z_step_size
return delta_x, delta_y, delta_z
def should_quit(self):
"""Return True if ESC was pressed."""
return self.key_states["quit"]
def should_save(self):
"""Return True if Enter was pressed (save episode)."""
return self.key_states["success"] or self.key_states["failure"]
class GamepadController(InputController):
"""Generate motion deltas from gamepad input."""
def __init__(self, x_step_size=0.01, y_step_size=0.01, z_step_size=0.01, deadzone=0.1):
super().__init__(x_step_size, y_step_size, z_step_size)
self.deadzone = deadzone
self.joystick = None
self.intervention_flag = False
def start(self):
"""Initialize pygame and the gamepad."""
import pygame
pygame.init()
pygame.joystick.init()
if pygame.joystick.get_count() == 0:
logging.error("No gamepad detected. Please connect a gamepad and try again.")
self.running = False
return
self.joystick = pygame.joystick.Joystick(0)
self.joystick.init()
logging.info(f"Initialized gamepad: {self.joystick.get_name()}")
print("Gamepad controls:")
print(" Left analog stick: Move in X-Y plane")
print(" Right analog stick (vertical): Move in Z axis")
print(" B/Circle button: Exit")
print(" Y/Triangle button: End episode with SUCCESS")
print(" A/Cross button: End episode with FAILURE")
print(" X/Square button: Rerecord episode")
def stop(self):
"""Clean up pygame resources."""
import pygame
if pygame.joystick.get_init():
if self.joystick:
self.joystick.quit()
pygame.joystick.quit()
pygame.quit()
def update(self):
"""Process pygame events to get fresh gamepad readings."""
import pygame
for event in pygame.event.get():
if event.type == pygame.JOYBUTTONDOWN:
if event.button == 3:
self.episode_end_status = "success"
# A button (1) for failure
elif event.button == 1:
self.episode_end_status = "failure"
# X button (0) for rerecord
elif event.button == 0:
self.episode_end_status = "rerecord_episode"
# Reset episode status on button release
elif event.type == pygame.JOYBUTTONUP:
if event.button in [0, 2, 3]:
self.episode_end_status = None
# Check for RB button (typically button 5) for intervention flag
if self.joystick.get_button(5):
self.intervention_flag = True
else:
self.intervention_flag = False
def get_deltas(self):
"""Get the current movement deltas from gamepad state."""
import pygame
try:
# Read joystick axes
# Left stick X and Y (typically axes 0 and 1)
x_input = self.joystick.get_axis(0) # Left/Right
y_input = self.joystick.get_axis(1) # Up/Down (often inverted)
# Right stick Y (typically axis 3 or 4)
z_input = self.joystick.get_axis(3) # Up/Down for Z
# Apply deadzone to avoid drift
x_input = 0 if abs(x_input) < self.deadzone else x_input
y_input = 0 if abs(y_input) < self.deadzone else y_input
z_input = 0 if abs(z_input) < self.deadzone else z_input
# Calculate deltas (note: may need to invert axes depending on controller)
delta_x = -y_input * self.y_step_size # Forward/backward
delta_y = -x_input * self.x_step_size # Left/right
delta_z = -z_input * self.z_step_size # Up/down
return delta_x, delta_y, delta_z
except pygame.error:
logging.error("Error reading gamepad. Is it still connected?")
return 0.0, 0.0, 0.0
def should_intervene(self):
"""Return True if intervention flag was set."""
return self.intervention_flag
class GamepadControllerHID(InputController):
"""Generate motion deltas from gamepad input using HIDAPI."""
def __init__(
self,
x_step_size=0.01,
y_step_size=0.01,
z_step_size=0.01,
deadzone=0.1,
vendor_id=0x046D,
product_id=0xC219,
):
"""
Initialize the HID gamepad controller.
Args:
step_size: Base movement step size in meters
z_scale: Scaling factor for Z-axis movement
deadzone: Joystick deadzone to prevent drift
vendor_id: USB vendor ID of the gamepad (default: Logitech)
product_id: USB product ID of the gamepad (default: RumblePad 2)
"""
super().__init__(x_step_size, y_step_size, z_step_size)
self.deadzone = deadzone
self.vendor_id = vendor_id
self.product_id = product_id
self.device = None
self.device_info = None
# Movement values (normalized from -1.0 to 1.0)
self.left_x = 0.0
self.left_y = 0.0
self.right_x = 0.0
self.right_y = 0.0
# Button states
self.buttons = {}
self.quit_requested = False
self.save_requested = False
self.intervention_flag = False
def find_device(self):
"""Look for the gamepad device by vendor and product ID."""
import hid
devices = hid.enumerate()
for device in devices:
if device["vendor_id"] == self.vendor_id and device["product_id"] == self.product_id:
logging.info(f"Found gamepad: {device.get('product_string', 'Unknown')}")
return device
logging.error(
f"No gamepad with vendor ID 0x{self.vendor_id:04X} and product ID 0x{self.product_id:04X} found"
)
return None
def start(self):
"""Connect to the gamepad using HIDAPI."""
import hid
self.device_info = self.find_device()
if not self.device_info:
self.running = False
return
try:
logging.info(f"Connecting to gamepad at path: {self.device_info['path']}")
self.device = hid.device()
self.device.open_path(self.device_info["path"])
self.device.set_nonblocking(1)
manufacturer = self.device.get_manufacturer_string()
product = self.device.get_product_string()
logging.info(f"Connected to {manufacturer} {product}")
logging.info("Gamepad controls (HID mode):")
logging.info(" Left analog stick: Move in X-Y plane")
logging.info(" Right analog stick: Move in Z axis (vertical)")
logging.info(" Button 1/B/Circle: Exit")
logging.info(" Button 2/A/Cross: End episode with SUCCESS")
logging.info(" Button 3/X/Square: End episode with FAILURE")
except OSError as e:
logging.error(f"Error opening gamepad: {e}")
logging.error("You might need to run this with sudo/admin privileges on some systems")
self.running = False
def stop(self):
"""Close the HID device connection."""
if self.device:
self.device.close()
self.device = None
def update(self):
"""
Read and process the latest gamepad data.
Due to an issue with the HIDAPI, we need to read the read the device several times in order to get a stable reading
"""
for _ in range(10):
self._update()
def _update(self):
"""Read and process the latest gamepad data."""
if not self.device or not self.running:
return
try:
# Read data from the gamepad
data = self.device.read(64)
if data:
# Interpret gamepad data - this will vary by controller model
# These offsets are for the Logitech RumblePad 2
if len(data) >= 8:
# Normalize joystick values from 0-255 to -1.0-1.0
self.left_x = (data[1] - 128) / 128.0
self.left_y = (data[2] - 128) / 128.0
self.right_x = (data[3] - 128) / 128.0
self.right_y = (data[4] - 128) / 128.0
# Apply deadzone
self.left_x = 0 if abs(self.left_x) < self.deadzone else self.left_x
self.left_y = 0 if abs(self.left_y) < self.deadzone else self.left_y
self.right_x = 0 if abs(self.right_x) < self.deadzone else self.right_x
self.right_y = 0 if abs(self.right_y) < self.deadzone else self.right_y
# Parse button states (byte 5 in the Logitech RumblePad 2)
buttons = data[5]
# Check if RB is pressed then the intervention flag should be set
self.intervention_flag = data[6] == 2
# Check if Y/Triangle button (bit 7) is pressed for saving
# Check if X/Square button (bit 5) is pressed for failure
# Check if A/Cross button (bit 4) is pressed for rerecording
if buttons & 1 << 7:
self.episode_end_status = "success"
elif buttons & 1 << 5:
self.episode_end_status = "failure"
elif buttons & 1 << 4:
self.episode_end_status = "rerecord_episode"
else:
self.episode_end_status = None
except OSError as e:
logging.error(f"Error reading from gamepad: {e}")
def get_deltas(self):
"""Get the current movement deltas from gamepad state."""
# Calculate deltas - invert as needed based on controller orientation
delta_x = -self.left_y * self.x_step_size # Forward/backward
delta_y = -self.left_x * self.y_step_size # Left/right
delta_z = -self.right_y * self.z_step_size # Up/down
return delta_x, delta_y, delta_z
def should_quit(self):
"""Return True if quit button was pressed."""
return self.quit_requested
def should_save(self):
"""Return True if save button was pressed."""
return self.save_requested
def should_intervene(self):
"""Return True if intervention flag was set."""
return self.intervention_flag
def test_forward_kinematics(robot, fps=10):
logging.info("Testing Forward Kinematics")
timestep = time.perf_counter()
while time.perf_counter() - timestep < 60.0:
loop_start_time = time.perf_counter()
robot.teleop_step()
obs = robot.capture_observation()
joint_positions = obs["observation.state"].cpu().numpy()
ee_pos = RobotKinematics.fk_gripper_tip(joint_positions)
logging.info(f"EE Position: {ee_pos[:3, 3]}")
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
def test_inverse_kinematics(robot, fps=10):
logging.info("Testing Inverse Kinematics")
timestep = time.perf_counter()
while time.perf_counter() - timestep < 60.0:
loop_start_time = time.perf_counter()
obs = robot.capture_observation()
joint_positions = obs["observation.state"].cpu().numpy()
ee_pos = RobotKinematics.fk_gripper_tip(joint_positions)
desired_ee_pos = ee_pos
target_joint_state = RobotKinematics.ik(joint_positions, desired_ee_pos, position_only=True)
robot.send_action(torch.from_numpy(target_joint_state))
logging.info(f"Target Joint State: {target_joint_state}")
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
def teleoperate_inverse_kinematics_with_leader(robot, fps=10):
logging.info("Testing Inverse Kinematics")
fk_func = RobotKinematics.fk_gripper_tip
timestep = time.perf_counter()
while time.perf_counter() - timestep < 60.0:
loop_start_time = time.perf_counter()
obs = robot.capture_observation()
joint_positions = obs["observation.state"].cpu().numpy()
ee_pos = fk_func(joint_positions)
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
leader_ee = fk_func(leader_joint_positions)
desired_ee_pos = leader_ee
target_joint_state = RobotKinematics.ik(
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
)
robot.send_action(torch.from_numpy(target_joint_state))
logging.info(f"Leader EE: {leader_ee[:3, 3]}, Follower EE: {ee_pos[:3, 3]}")
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
def teleoperate_delta_inverse_kinematics_with_leader(robot, fps=10):
logging.info("Testing Delta End-Effector Control")
timestep = time.perf_counter()
# Initial position capture
obs = robot.capture_observation()
joint_positions = obs["observation.state"].cpu().numpy()
fk_func = RobotKinematics.fk_gripper_tip
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
initial_leader_ee = fk_func(leader_joint_positions)
desired_ee_pos = np.diag(np.ones(4))
while time.perf_counter() - timestep < 60.0:
loop_start_time = time.perf_counter()
# Get leader state for teleoperation
leader_joint_positions = robot.leader_arms["main"].read("Present_Position")
leader_ee = fk_func(leader_joint_positions)
# Get current state
# obs = robot.capture_observation()
# joint_positions = obs["observation.state"].cpu().numpy()
joint_positions = robot.follower_arms["main"].read("Present_Position")
current_ee_pos = fk_func(joint_positions)
# Calculate delta between leader and follower end-effectors
# Scaling factor can be adjusted for sensitivity
scaling_factor = 1.0
ee_delta = (leader_ee - initial_leader_ee) * scaling_factor
# Apply delta to current position
desired_ee_pos[0, 3] = current_ee_pos[0, 3] + ee_delta[0, 3]
desired_ee_pos[1, 3] = current_ee_pos[1, 3] + ee_delta[1, 3]
desired_ee_pos[2, 3] = current_ee_pos[2, 3] + ee_delta[2, 3]
if np.any(np.abs(ee_delta[:3, 3]) > 0.01):
# Compute joint targets via inverse kinematics
target_joint_state = RobotKinematics.ik(
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
)
initial_leader_ee = leader_ee.copy()
# Send command to robot
robot.send_action(torch.from_numpy(target_joint_state))
# Logging
logging.info(f"Current EE: {current_ee_pos[:3, 3]}, Desired EE: {desired_ee_pos[:3, 3]}")
logging.info(f"Delta EE: {ee_delta[:3, 3]}")
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
def teleoperate_delta_inverse_kinematics(robot, controller, fps=10, bounds=None, fk_func=None):
"""
Control a robot using delta end-effector movements from any input controller.
Args:
robot: Robot instance to control
controller: InputController instance (keyboard, gamepad, etc.)
fps: Control frequency in Hz
bounds: Optional position limits
fk_func: Forward kinematics function to use
"""
if fk_func is None:
fk_func = RobotKinematics.fk_gripper_tip
logging.info(f"Testing Delta End-Effector Control with {controller.__class__.__name__}")
# Initial position capture
obs = robot.capture_observation()
joint_positions = obs["observation.state"].cpu().numpy()
current_ee_pos = fk_func(joint_positions)
# Initialize desired position with current position
desired_ee_pos = np.eye(4) # Identity matrix
timestep = time.perf_counter()
with controller:
while not controller.should_quit() and time.perf_counter() - timestep < 60.0:
loop_start_time = time.perf_counter()
# Process input events
controller.update()
# Get currrent robot state
joint_positions = robot.follower_arms["main"].read("Present_Position")
current_ee_pos = fk_func(joint_positions)
# Get movement deltas from the controller
delta_x, delta_y, delta_z = controller.get_deltas()
# Update desired position
desired_ee_pos[0, 3] = current_ee_pos[0, 3] + delta_x
desired_ee_pos[1, 3] = current_ee_pos[1, 3] + delta_y
desired_ee_pos[2, 3] = current_ee_pos[2, 3] + delta_z
# Apply bounds if provided
if bounds is not None:
desired_ee_pos[:3, 3] = np.clip(desired_ee_pos[:3, 3], bounds["min"], bounds["max"])
# Only send commands if there's actual movement
if any([abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]]):
# Compute joint targets via inverse kinematics
target_joint_state = RobotKinematics.ik(
joint_positions, desired_ee_pos, position_only=True, fk_func=fk_func
)
# Send command to robot
robot.send_action(torch.from_numpy(target_joint_state))
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
def teleoperate_gym_env(env, controller, fps: int = 30):
"""
Control a robot through a gym environment using keyboard inputs.
Args:
env: A gym environment created with make_robot_env
fps: Target control frequency
"""
logging.info("Testing Keyboard Control of Gym Environment")
print("Keyboard controls:")
print(" Arrow keys: Move in X-Y plane")
print(" Shift and Shift_R: Move in Z axis")
print(" ESC: Exit")
# Reset the environment to get initial observation
obs, info = env.reset()
try:
with controller:
while not controller.should_quit():
loop_start_time = time.perf_counter()
# Process input events
controller.update()
# Get movement deltas from the controller
delta_x, delta_y, delta_z = controller.get_deltas()
# Create the action vector
action = np.array([delta_x, delta_y, delta_z])
# Skip if no movement
if any([abs(v) > 0.001 for v in [delta_x, delta_y, delta_z]]):
# Step the environment - pass action as a tensor with intervention flag
action_tensor = torch.from_numpy(action.astype(np.float32))
obs, reward, terminated, truncated, info = env.step((action_tensor, False))
# Log information
logging.info(f"Action: [{delta_x:.4f}, {delta_y:.4f}, {delta_z:.4f}]")
logging.info(f"Reward: {reward}")
# Reset if episode ended
if terminated or truncated:
logging.info("Episode ended, resetting environment")
obs, info = env.reset()
# Maintain target frame rate
busy_wait(1 / fps - (time.perf_counter() - loop_start_time))
finally:
# Close the environment
env.close()
def make_robot_from_config(config_path, overrides=None):
"""Helper function to create a robot from a config file."""
if overrides is None:
overrides = []
robot_cfg = init_hydra_config(config_path, overrides)
return make_robot(robot_cfg)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test end-effector control")
parser.add_argument(
"--mode",
type=str,
default="keyboard",
choices=[
"keyboard",
"gamepad",
"keyboard_gym",
"gamepad_gym",
"leader",
"leader_abs",
],
help="Control mode to use",
)
parser.add_argument(
"--task",
type=str,
default="Robot manipulation task",
help="Description of the task being performed",
)
parser.add_argument(
"--push-to-hub",
default=True,
type=bool,
help="Push the dataset to Hugging Face Hub",
)
# Add the rest of your existing arguments
args = parser.parse_args()
robot = make_robot_from_config("lerobot/configs/robot/so100.yaml", [])
if not robot.is_connected:
robot.connect()
# Example bounds
bounds = {
"max": np.array([0.32170487, 0.201285, 0.10273342]),
"min": np.array([0.16631757, -0.08237468, 0.03364977]),
}
try:
# Determine controller type based on mode prefix
controller = None
if args.mode.startswith("keyboard"):
controller = KeyboardController(x_step_size=0.01, y_step_size=0.01, z_step_size=0.05)
elif args.mode.startswith("gamepad"):
controller = GamepadController(x_step_size=0.02, y_step_size=0.02, z_step_size=0.05)
# Handle mode categories
if args.mode in ["keyboard", "gamepad"]:
# Direct robot control modes
teleoperate_delta_inverse_kinematics(robot, controller, bounds=bounds, fps=10)
elif args.mode in ["keyboard_gym", "gamepad_gym"]:
# Gym environment control modes
from lerobot.scripts.server.gym_manipulator import make_robot_env
cfg = init_hydra_config("lerobot/configs/env/so100_real.yaml", [])
cfg.env.wrapper.ee_action_space_params.use_gamepad = False
env = make_robot_env(robot, None, cfg)
teleoperate_gym_env(env, controller)
elif args.mode == "leader":
# Leader-follower modes don't use controllers
teleoperate_delta_inverse_kinematics_with_leader(robot)
elif args.mode == "leader_abs":
teleoperate_inverse_kinematics_with_leader(robot)
finally:
if robot.is_connected:
robot.disconnect()