lerobot/lerobot/scripts/server/learner_server.py

871 lines
30 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import shutil
import time
from pprint import pformat
from concurrent.futures import ThreadPoolExecutor
# from torch.multiprocessing import Event, Queue, Process
# from threading import Event, Thread
# from torch.multiprocessing import Queue, Event
from torch.multiprocessing import Queue
from lerobot.scripts.server.utils import setup_process_handlers
import grpc
# Import generated stubs
import hilserl_pb2_grpc # type: ignore
import hydra
import torch
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
from torch import nn
from torch.optim.optimizer import Optimizer
from lerobot.common.datasets.factory import make_dataset
# TODO: Remove the import of maniskill
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.sac.modeling_sac import SACPolicy
from lerobot.common.utils.utils import (
format_big_number,
get_global_random_state,
get_safe_torch_device,
init_hydra_config,
init_logging,
set_global_random_state,
set_global_seed,
)
from lerobot.scripts.server.buffer import (
ReplayBuffer,
concatenate_batch_transitions,
move_transition_to_device,
move_state_dict_to_device,
bytes_to_transitions,
state_to_bytes,
bytes_to_python_object,
)
from lerobot.scripts.server import learner_service
def handle_resume_logic(cfg: DictConfig, out_dir: str) -> DictConfig:
if not cfg.resume:
if Logger.get_last_checkpoint_dir(out_dir).exists():
raise RuntimeError(
f"Output directory {Logger.get_last_checkpoint_dir(out_dir)} already exists. "
"Use `resume=true` to resume training."
)
return cfg
# if resume == True
checkpoint_dir = Logger.get_last_checkpoint_dir(out_dir)
if not checkpoint_dir.exists():
raise RuntimeError(
f"No model checkpoint found in {checkpoint_dir} for resume=True"
)
checkpoint_cfg_path = str(
Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml"
)
logging.info(
colored(
"Resume=True detected, resuming previous run",
color="yellow",
attrs=["bold"],
)
)
checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
del diff["values_changed"]["root['resume']"]
if len(diff) > 0:
logging.warning(
f"Differences between the checkpoint config and the provided config detected: \n{pformat(diff)}\n"
"Checkpoint configuration takes precedence."
)
checkpoint_cfg.resume = True
return checkpoint_cfg
def load_training_state(
cfg: DictConfig,
logger: Logger,
optimizers: Optimizer | dict,
):
if not cfg.resume:
return None, None
training_state = torch.load(
logger.last_checkpoint_dir / logger.training_state_file_name, weights_only=False
)
if isinstance(training_state["optimizer"], dict):
assert set(training_state["optimizer"].keys()) == set(optimizers.keys())
for k, v in training_state["optimizer"].items():
optimizers[k].load_state_dict(v)
else:
optimizers.load_state_dict(training_state["optimizer"])
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
return training_state["step"], training_state["interaction_step"]
def log_training_info(cfg: DictConfig, out_dir: str, policy: nn.Module) -> None:
num_learnable_params = sum(
p.numel() for p in policy.parameters() if p.requires_grad
)
num_total_params = sum(p.numel() for p in policy.parameters())
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.online_steps=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
def initialize_replay_buffer(
cfg: DictConfig, logger: Logger, device: str, storage_device: str
) -> ReplayBuffer:
if not cfg.resume:
return ReplayBuffer(
capacity=cfg.training.online_buffer_capacity,
device=device,
state_keys=cfg.policy.input_shapes.keys(),
storage_device=storage_device,
optimize_memory=True,
)
logging.info("Resume training load the online dataset")
dataset = LeRobotDataset(
repo_id=cfg.dataset_repo_id,
local_files_only=True,
root=logger.log_dir / "dataset",
)
return ReplayBuffer.from_lerobot_dataset(
lerobot_dataset=dataset,
capacity=cfg.training.online_buffer_capacity,
device=device,
state_keys=cfg.policy.input_shapes.keys(),
optimize_memory=True,
)
def initialize_offline_replay_buffer(
cfg: DictConfig,
logger: Logger,
device: str,
storage_device: str,
active_action_dims: list[int] | None = None,
) -> ReplayBuffer:
if not cfg.resume:
logging.info("make_dataset offline buffer")
offline_dataset = make_dataset(cfg)
if cfg.resume:
logging.info("load offline dataset")
offline_dataset = LeRobotDataset(
repo_id=cfg.dataset_repo_id,
local_files_only=True,
root=logger.log_dir / "dataset_offline",
)
logging.info("Convert to a offline replay buffer")
offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
offline_dataset,
device=device,
state_keys=cfg.policy.input_shapes.keys(),
action_mask=active_action_dims,
action_delta=cfg.env.wrapper.delta_action,
storage_device=storage_device,
optimize_memory=True,
capacity=cfg.training.offline_buffer_capacity,
)
return offline_replay_buffer
def get_observation_features(
policy: SACPolicy, observations: torch.Tensor, next_observations: torch.Tensor
) -> tuple[torch.Tensor | None, torch.Tensor | None]:
if (
policy.config.vision_encoder_name is None
or not policy.config.freeze_vision_encoder
):
return None, None
with torch.no_grad():
observation_features = (
policy.actor.encoder(observations)
if policy.actor.encoder is not None
else None
)
next_observation_features = (
policy.actor.encoder(next_observations)
if policy.actor.encoder is not None
else None
)
return observation_features, next_observation_features
def use_threads(cfg: DictConfig) -> bool:
return cfg.actor_learner_config.concurrency.learner == "threads"
def start_learner_threads(
cfg: DictConfig,
logger: Logger,
out_dir: str,
shutdown_event: any, # Event,
) -> None:
# Create multiprocessing queues
transition_queue = Queue()
interaction_message_queue = Queue()
parameters_queue = Queue()
concurrency_entity = None
if use_threads(cfg):
from threading import Thread
concurrency_entity = Thread
else:
from torch.multiprocessing import Process
concurrency_entity = Process
communication_process = concurrency_entity(
target=start_learner_server,
args=(
parameters_queue,
transition_queue,
interaction_message_queue,
shutdown_event,
cfg,
),
daemon=True,
)
communication_process.start()
add_actor_information_and_train(
cfg,
logger,
out_dir,
shutdown_event,
transition_queue,
interaction_message_queue,
parameters_queue,
)
logging.info("[LEARNER] Training process stopped")
logging.info("[LEARNER] Closing queues")
transition_queue.close()
interaction_message_queue.close()
parameters_queue.close()
communication_process.join()
logging.info("[LEARNER] Communication process joined")
logging.info("[LEARNER] join queues")
transition_queue.cancel_join_thread()
interaction_message_queue.cancel_join_thread()
parameters_queue.cancel_join_thread()
logging.info("[LEARNER] queues closed")
def start_learner_server(
parameters_queue: Queue,
transition_queue: Queue,
interaction_message_queue: Queue,
shutdown_event: any, # Event,
cfg: DictConfig,
):
if not use_threads(cfg):
# We need init logging for MP separataly
init_logging()
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
# Return back for MP
setup_process_handlers(False)
service = learner_service.LearnerService(
shutdown_event,
parameters_queue,
cfg.actor_learner_config.policy_parameters_push_frequency,
transition_queue,
interaction_message_queue,
)
server = grpc.server(
ThreadPoolExecutor(max_workers=learner_service.MAX_WORKERS),
options=[
("grpc.max_receive_message_length", learner_service.MAX_MESSAGE_SIZE),
("grpc.max_send_message_length", learner_service.MAX_MESSAGE_SIZE),
],
)
hilserl_pb2_grpc.add_LearnerServiceServicer_to_server(
service,
server,
)
host = cfg.actor_learner_config.learner_host
port = cfg.actor_learner_config.learner_port
server.add_insecure_port(f"{host}:{port}")
server.start()
logging.info("[LEARNER] gRPC server started")
shutdown_event.wait()
logging.info("[LEARNER] Stopping gRPC server...")
server.stop(learner_service.STUTDOWN_TIMEOUT)
logging.info("[LEARNER] gRPC server stopped")
def check_nan_in_transition(
observations: torch.Tensor,
actions: torch.Tensor,
next_state: torch.Tensor,
raise_error: bool = False,
) -> bool:
"""
Check for NaN values in transition data.
Args:
observations: Dictionary of observation tensors
actions: Action tensor
next_state: Dictionary of next state tensors
raise_error: If True, raises ValueError when NaN is detected
Returns:
bool: True if NaN values were detected, False otherwise
"""
nan_detected = False
# Check observations
for key, tensor in observations.items():
if torch.isnan(tensor).any():
logging.error(f"observations[{key}] contains NaN values")
nan_detected = True
if raise_error:
raise ValueError(f"NaN detected in observations[{key}]")
# Check next state
for key, tensor in next_state.items():
if torch.isnan(tensor).any():
logging.error(f"next_state[{key}] contains NaN values")
nan_detected = True
if raise_error:
raise ValueError(f"NaN detected in next_state[{key}]")
# Check actions
if torch.isnan(actions).any():
logging.error("actions contains NaN values")
nan_detected = True
if raise_error:
raise ValueError("NaN detected in actions")
return nan_detected
def push_actor_policy_to_queue(parameters_queue: Queue, policy: nn.Module):
logging.debug("[LEARNER] Pushing actor policy to the queue")
state_dict = move_state_dict_to_device(policy.actor.state_dict(), device="cpu")
state_bytes = state_to_bytes(state_dict)
parameters_queue.put(state_bytes)
def add_actor_information_and_train(
cfg,
logger: Logger,
out_dir: str,
shutdown_event: any, # Event,
transition_queue: Queue,
interaction_message_queue: Queue,
parameters_queue: Queue,
):
"""
Handles data transfer from the actor to the learner, manages training updates,
and logs training progress in an online reinforcement learning setup.
This function continuously:
- Transfers transitions from the actor to the replay buffer.
- Logs received interaction messages.
- Ensures training begins only when the replay buffer has a sufficient number of transitions.
- Samples batches from the replay buffer and performs multiple critic updates.
- Periodically updates the actor, critic, and temperature optimizers.
- Logs training statistics, including loss values and optimization frequency.
**NOTE:**
- This function performs multiple responsibilities (data transfer, training, and logging).
It should ideally be split into smaller functions in the future.
- Due to Python's **Global Interpreter Lock (GIL)**, running separate threads for different tasks
significantly reduces performance. Instead, this function executes all operations in a single thread.
Args:
cfg: Configuration object containing hyperparameters.
device (str): The computing device (`"cpu"` or `"cuda"`).
logger (Logger): Logger instance for tracking training progress.
out_dir (str): The output directory for storing training checkpoints and logs.
shutdown_event (Event): Event to signal shutdown.
transition_queue (Queue): Queue for receiving transitions from the actor.
interaction_message_queue (Queue): Queue for receiving interaction messages from the actor.
parameters_queue (Queue): Queue for sending policy parameters to the actor.
"""
device = get_safe_torch_device(cfg.device, log=True)
storage_device = get_safe_torch_device(cfg_device=cfg.training.storage_device)
logging.info("Initializing policy")
### Instantiate the policy in both the actor and learner processes
### To avoid sending a SACPolicy object through the port, we create a policy intance
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
# TODO: At some point we should just need make sac policy
policy: SACPolicy = make_policy(
hydra_cfg=cfg,
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
# Hack: But if we do online traning, we do not need dataset_stats
dataset_stats=None,
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir)
if cfg.resume
else None,
)
# Update the policy config with the grad_clip_norm value from training config if it exists
clip_grad_norm_value = cfg.training.grad_clip_norm
# compile policy
policy = torch.compile(policy)
assert isinstance(policy, nn.Module)
push_actor_policy_to_queue(parameters_queue, policy)
last_time_policy_pushed = time.time()
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
resume_optimization_step, resume_interaction_step = load_training_state(
cfg, logger, optimizers
)
log_training_info(cfg, out_dir, policy)
replay_buffer = initialize_replay_buffer(cfg, logger, device, storage_device)
batch_size = cfg.training.batch_size
offline_replay_buffer = None
if cfg.dataset_repo_id is not None:
active_action_dims = None
if cfg.env.wrapper.joint_masking_action_space is not None:
active_action_dims = [
i
for i, mask in enumerate(cfg.env.wrapper.joint_masking_action_space)
if mask
]
offline_replay_buffer = initialize_offline_replay_buffer(
cfg=cfg,
logger=logger,
device=device,
storage_device=storage_device,
active_action_dims=active_action_dims,
)
batch_size: int = batch_size // 2 # We will sample from both replay buffer
# NOTE: This function doesn't have a single responsibility, it should be split into multiple functions
# in the future. The reason why we did that is the GIL in Python. It's super slow the performance
# are divided by 200. So we need to have a single thread that does all the work.
time.time()
logging.info("Starting learner thread")
interaction_message, transition = None, None
optimization_step = (
resume_optimization_step if resume_optimization_step is not None else 0
)
interaction_step_shift = (
resume_interaction_step if resume_interaction_step is not None else 0
)
# Extract variables from cfg
online_step_before_learning = cfg.training.online_step_before_learning
utd_ratio = cfg.policy.utd_ratio
dataset_repo_id = cfg.dataset_repo_id
fps = cfg.fps
log_freq = cfg.training.log_freq
save_freq = cfg.training.save_freq
device = cfg.device
storage_device = cfg.training.storage_device
policy_update_freq = cfg.training.policy_update_freq
policy_parameters_push_frequency = (
cfg.actor_learner_config.policy_parameters_push_frequency
)
save_checkpoint = cfg.training.save_checkpoint
online_steps = cfg.training.online_steps
while True:
if shutdown_event is not None and shutdown_event.is_set():
logging.info("[LEARNER] Shutdown signal received. Exiting...")
break
logging.debug("[LEARNER] Waiting for transitions")
while not transition_queue.empty() and not shutdown_event.is_set():
transition_list = transition_queue.get()
transition_list = bytes_to_transitions(transition_list)
for transition in transition_list:
transition = move_transition_to_device(transition, device=device)
if check_nan_in_transition(
transition["state"], transition["action"], transition["next_state"]
):
logging.warning("NaN detected in transition, skipping")
continue
replay_buffer.add(**transition)
if cfg.dataset_repo_id is not None and transition.get(
"complementary_info", {}
).get("is_intervention"):
offline_replay_buffer.add(**transition)
logging.debug("[LEARNER] Received transitions")
logging.debug("[LEARNER] Waiting for interactions")
while not interaction_message_queue.empty() and not shutdown_event.is_set():
interaction_message = interaction_message_queue.get()
interaction_message = bytes_to_python_object(interaction_message)
# If cfg.resume, shift the interaction step with the last checkpointed step in order to not break the logging
interaction_message["Interaction step"] += interaction_step_shift
logger.log_dict(
interaction_message, mode="train", custom_step_key="Interaction step"
)
logging.debug("[LEARNER] Received interactions")
if len(replay_buffer) < online_step_before_learning:
continue
logging.debug("[LEARNER] Starting optimization loop")
time_for_one_optimization_step = time.time()
for _ in range(utd_ratio - 1):
batch = replay_buffer.sample(batch_size)
if dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(batch, batch_offline)
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
check_nan_in_transition(
observations=observations, actions=actions, next_state=next_observations
)
observation_features, next_observation_features = get_observation_features(
policy, observations, next_observations
)
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
observation_features=observation_features,
next_observation_features=next_observation_features,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
# clip gradients
critic_grad_norm = torch.nn.utils.clip_grad_norm_(
policy.critic_ensemble.parameters(), clip_grad_norm_value
)
optimizers["critic"].step()
batch = replay_buffer.sample(batch_size)
if dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(
left_batch_transitions=batch, right_batch_transition=batch_offline
)
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
check_nan_in_transition(
observations=observations, actions=actions, next_state=next_observations
)
observation_features, next_observation_features = get_observation_features(
policy, observations, next_observations
)
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
observation_features=observation_features,
next_observation_features=next_observation_features,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
# clip gradients
critic_grad_norm = torch.nn.utils.clip_grad_norm_(
policy.critic_ensemble.parameters(), clip_grad_norm_value
).item()
optimizers["critic"].step()
training_infos = {}
training_infos["loss_critic"] = loss_critic.item()
training_infos["critic_grad_norm"] = critic_grad_norm
if optimization_step % policy_update_freq == 0:
for _ in range(policy_update_freq):
loss_actor = policy.compute_loss_actor(
observations=observations,
observation_features=observation_features,
)
optimizers["actor"].zero_grad()
loss_actor.backward()
# clip gradients
actor_grad_norm = torch.nn.utils.clip_grad_norm_(
policy.actor.parameters_to_optimize, clip_grad_norm_value
).item()
optimizers["actor"].step()
training_infos["loss_actor"] = loss_actor.item()
training_infos["actor_grad_norm"] = actor_grad_norm
# Temperature optimization
loss_temperature = policy.compute_loss_temperature(
observations=observations,
observation_features=observation_features,
)
optimizers["temperature"].zero_grad()
loss_temperature.backward()
# clip gradients
temp_grad_norm = torch.nn.utils.clip_grad_norm_(
[policy.log_alpha], clip_grad_norm_value
).item()
optimizers["temperature"].step()
training_infos["loss_temperature"] = loss_temperature.item()
training_infos["temperature_grad_norm"] = temp_grad_norm
training_infos["temperature"] = policy.temperature
if time.time() - last_time_policy_pushed > policy_parameters_push_frequency:
push_actor_policy_to_queue(parameters_queue, policy)
last_time_policy_pushed = time.time()
policy.update_target_networks()
if optimization_step % cfg.training.log_freq == 0:
training_infos["replay_buffer_size"] = len(replay_buffer)
if offline_replay_buffer is not None:
training_infos["offline_replay_buffer_size"] = len(
offline_replay_buffer
)
training_infos["Optimization step"] = optimization_step
logger.log_dict(
d=training_infos, mode="train", custom_step_key="Optimization step"
)
# logging.info(f"Training infos: {training_infos}")
time_for_one_optimization_step = time.time() - time_for_one_optimization_step
frequency_for_one_optimization_step = 1 / (
time_for_one_optimization_step + 1e-9
)
logging.info(
f"[LEARNER] Optimization frequency loop [Hz]: {frequency_for_one_optimization_step}"
)
logger.log_dict(
{
"Optimization frequency loop [Hz]": frequency_for_one_optimization_step,
"Optimization step": optimization_step,
},
mode="train",
custom_step_key="Optimization step",
)
optimization_step += 1
if optimization_step % log_freq == 0:
logging.info(f"[LEARNER] Number of optimization step: {optimization_step}")
if save_checkpoint and (
optimization_step % save_freq == 0 or optimization_step == online_steps
):
logging.info(f"Checkpoint policy after step {optimization_step}")
_num_digits = max(6, len(str(online_steps)))
step_identifier = f"{optimization_step:0{_num_digits}d}"
interaction_step = (
interaction_message["Interaction step"]
if interaction_message is not None
else 0
)
logger.save_checkpoint(
optimization_step,
policy,
optimizers,
scheduler=None,
identifier=step_identifier,
interaction_step=interaction_step,
)
# TODO : temporarly save replay buffer here, remove later when on the robot
# We want to control this with the keyboard inputs
dataset_dir = logger.log_dir / "dataset"
if dataset_dir.exists() and dataset_dir.is_dir():
shutil.rmtree(
dataset_dir,
)
replay_buffer.to_lerobot_dataset(
dataset_repo_id, fps=fps, root=logger.log_dir / "dataset"
)
if offline_replay_buffer is not None:
dataset_dir = logger.log_dir / "dataset_offline"
if dataset_dir.exists() and dataset_dir.is_dir():
shutil.rmtree(
dataset_dir,
)
offline_replay_buffer.to_lerobot_dataset(
cfg.dataset_repo_id,
fps=cfg.fps,
root=logger.log_dir / "dataset_offline",
)
logging.info("Resume training")
def make_optimizers_and_scheduler(cfg, policy: nn.Module):
"""
Creates and returns optimizers for the actor, critic, and temperature components of a reinforcement learning policy.
This function sets up Adam optimizers for:
- The **actor network**, ensuring that only relevant parameters are optimized.
- The **critic ensemble**, which evaluates the value function.
- The **temperature parameter**, which controls the entropy in soft actor-critic (SAC)-like methods.
It also initializes a learning rate scheduler, though currently, it is set to `None`.
**NOTE:**
- If the encoder is shared, its parameters are excluded from the actor's optimization process.
- The policy's log temperature (`log_alpha`) is wrapped in a list to ensure proper optimization as a standalone tensor.
Args:
cfg: Configuration object containing hyperparameters.
policy (nn.Module): The policy model containing the actor, critic, and temperature components.
Returns:
Tuple[Dict[str, torch.optim.Optimizer], Optional[torch.optim.lr_scheduler._LRScheduler]]:
A tuple containing:
- `optimizers`: A dictionary mapping component names ("actor", "critic", "temperature") to their respective Adam optimizers.
- `lr_scheduler`: Currently set to `None` but can be extended to support learning rate scheduling.
"""
optimizer_actor = torch.optim.Adam(
# NOTE: Handle the case of shared encoder where the encoder weights are not optimized with the gradient of the actor
params=policy.actor.parameters_to_optimize,
lr=policy.config.actor_lr,
)
optimizer_critic = torch.optim.Adam(
params=policy.critic_ensemble.parameters(), lr=policy.config.critic_lr
)
optimizer_temperature = torch.optim.Adam(
params=[policy.log_alpha], lr=policy.config.critic_lr
)
lr_scheduler = None
optimizers = {
"actor": optimizer_actor,
"critic": optimizer_critic,
"temperature": optimizer_temperature,
}
return optimizers, lr_scheduler
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
init_logging()
logging.info(pformat(OmegaConf.to_container(cfg)))
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
cfg = handle_resume_logic(cfg, out_dir)
set_global_seed(cfg.seed)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
shutdown_event = setup_process_handlers(use_threads(cfg))
start_learner_threads(
cfg,
logger,
out_dir,
shutdown_event,
)
@hydra.main(version_base="1.2", config_name="default", config_path="../../configs")
def train_cli(cfg: dict):
if not use_threads(cfg):
import torch.multiprocessing as mp
mp.set_start_method("spawn")
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
logging.info("[LEARNER] train_cli finished")
if __name__ == "__main__":
train_cli()
logging.info("[LEARNER] main finished")