46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from omegaconf import OmegaConf
|
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
|
|
|
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
|
|
|
|
|
def make_dataset(
|
|
cfg,
|
|
split="train",
|
|
):
|
|
if cfg.env.name not in cfg.dataset_repo_id:
|
|
logging.warning(
|
|
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
|
f"environment ({cfg.env.name=})."
|
|
)
|
|
|
|
delta_timestamps = cfg.training.get("delta_timestamps")
|
|
if delta_timestamps is not None:
|
|
for key in delta_timestamps:
|
|
if isinstance(delta_timestamps[key], str):
|
|
delta_timestamps[key] = eval(delta_timestamps[key])
|
|
|
|
# TODO(rcadene): add data augmentations
|
|
|
|
dataset = LeRobotDataset(
|
|
cfg.dataset_repo_id,
|
|
split=split,
|
|
root=DATA_DIR,
|
|
delta_timestamps=delta_timestamps,
|
|
)
|
|
|
|
if cfg.get("override_dataset_stats"):
|
|
for key, stats_dict in cfg.override_dataset_stats.items():
|
|
for stats_type, listconfig in stats_dict.items():
|
|
# example of stats_type: min, max, mean, std
|
|
stats = OmegaConf.to_container(listconfig, resolve=True)
|
|
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
|
|
|
|
return dataset
|