lerobot/tests/datasets/test_image_transforms.py

375 lines
13 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from safetensors.torch import load_file
from torchvision.transforms import v2
from torchvision.transforms.v2 import functional as F # noqa: N812
from lerobot.common.datasets.transforms import (
ImageTransformConfig,
ImageTransforms,
ImageTransformsConfig,
RandomSubsetApply,
SharpnessJitter,
make_transform_from_config,
)
from lerobot.common.utils.random_utils import seeded_context
from lerobot.scripts.visualize_image_transforms import (
save_all_transforms,
save_each_transform,
)
from tests.artifacts.image_transforms.save_image_transforms_to_safetensors import ARTIFACT_DIR
from tests.utils import require_x86_64_kernel
@pytest.fixture
def color_jitters():
return [
v2.ColorJitter(brightness=0.5),
v2.ColorJitter(contrast=0.5),
v2.ColorJitter(saturation=0.5),
]
@pytest.fixture
def single_transforms():
return load_file(ARTIFACT_DIR / "single_transforms.safetensors")
@pytest.fixture
def img_tensor(single_transforms):
return single_transforms["original_frame"]
@pytest.fixture
def default_transforms():
return load_file(ARTIFACT_DIR / "default_transforms.safetensors")
def test_get_image_transforms_no_transform_enable_false(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig() # default is enable=False
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
def test_get_image_transforms_no_transform_max_num_transforms_0(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True, max_num_transforms=0)
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_brightness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"brightness": ImageTransformConfig(type="ColorJitter", kwargs={"brightness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(brightness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_contrast(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"contrast": ImageTransformConfig(type="ColorJitter", kwargs={"contrast": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(contrast=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_saturation(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"saturation": ImageTransformConfig(type="ColorJitter", kwargs={"saturation": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(saturation=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(-0.25, -0.25), (0.25, 0.25)])
def test_get_image_transforms_hue(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"hue": ImageTransformConfig(type="ColorJitter", kwargs={"hue": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(hue=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_sharpness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"sharpness": ImageTransformConfig(type="SharpnessJitter", kwargs={"sharpness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = SharpnessJitter(sharpness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
def test_get_image_transforms_max_num_transforms(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
max_num_transforms=5,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 0.5)),
v2.ColorJitter(contrast=(0.5, 0.5)),
v2.ColorJitter(saturation=(0.5, 0.5)),
v2.ColorJitter(hue=(0.5, 0.5)),
SharpnessJitter(sharpness=(0.5, 0.5)),
]
)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@require_x86_64_kernel
def test_get_image_transforms_random_order(img_tensor_factory):
out_imgs = []
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
random_order=True,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
tf = ImageTransforms(tf_cfg)
with seeded_context(1338):
for _ in range(10):
out_imgs.append(tf(img_tensor))
tmp_img_tensor = img_tensor
for sub_tf in tf.tf.selected_transforms:
tmp_img_tensor = sub_tf(tmp_img_tensor)
torch.testing.assert_close(tmp_img_tensor, out_imgs[-1])
for i in range(1, len(out_imgs)):
with pytest.raises(AssertionError):
torch.testing.assert_close(out_imgs[0], out_imgs[i])
@pytest.mark.parametrize(
"tf_type, tf_name, min_max_values",
[
("ColorJitter", "brightness", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "contrast", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "saturation", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "hue", [(-0.25, -0.25), (0.25, 0.25)]),
("SharpnessJitter", "sharpness", [(0.5, 0.5), (2.0, 2.0)]),
],
)
def test_backward_compatibility_single_transforms(
img_tensor, tf_type, tf_name, min_max_values, single_transforms
):
for min_max in min_max_values:
tf_cfg = ImageTransformConfig(type=tf_type, kwargs={tf_name: min_max})
tf = make_transform_from_config(tf_cfg)
actual = tf(img_tensor)
key = f"{tf_name}_{min_max[0]}_{min_max[1]}"
expected = single_transforms[key]
torch.testing.assert_close(actual, expected)
@require_x86_64_kernel
def test_backward_compatibility_default_config(img_tensor, default_transforms):
cfg = ImageTransformsConfig(enable=True)
default_tf = ImageTransforms(cfg)
with seeded_context(1337):
actual = default_tf(img_tensor)
expected = default_transforms["default"]
torch.testing.assert_close(actual, expected)
@pytest.mark.parametrize("p", [[0, 1], [1, 0]])
def test_random_subset_apply_single_choice(img_tensor_factory, p):
img_tensor = img_tensor_factory()
flips = [v2.RandomHorizontalFlip(p=1), v2.RandomVerticalFlip(p=1)]
random_choice = RandomSubsetApply(flips, p=p, n_subset=1, random_order=False)
actual = random_choice(img_tensor)
p_horz, _ = p
if p_horz:
torch.testing.assert_close(actual, F.horizontal_flip(img_tensor))
else:
torch.testing.assert_close(actual, F.vertical_flip(img_tensor))
def test_random_subset_apply_random_order(img_tensor_factory):
img_tensor = img_tensor_factory()
flips = [v2.RandomHorizontalFlip(p=1), v2.RandomVerticalFlip(p=1)]
random_order = RandomSubsetApply(flips, p=[0.5, 0.5], n_subset=2, random_order=True)
# We can't really check whether the transforms are actually applied in random order. However,
# horizontal and vertical flip are commutative. Meaning, even under the assumption that the transform
# applies them in random order, we can use a fixed order to compute the expected value.
actual = random_order(img_tensor)
expected = v2.Compose(flips)(img_tensor)
torch.testing.assert_close(actual, expected)
def test_random_subset_apply_valid_transforms(img_tensor_factory, color_jitters):
img_tensor = img_tensor_factory()
transform = RandomSubsetApply(color_jitters)
output = transform(img_tensor)
assert output.shape == img_tensor.shape
def test_random_subset_apply_probability_length_mismatch(color_jitters):
with pytest.raises(ValueError):
RandomSubsetApply(color_jitters, p=[0.5, 0.5])
@pytest.mark.parametrize("n_subset", [0, 5])
def test_random_subset_apply_invalid_n_subset(color_jitters, n_subset):
with pytest.raises(ValueError):
RandomSubsetApply(color_jitters, n_subset=n_subset)
def test_sharpness_jitter_valid_range_tuple(img_tensor_factory):
img_tensor = img_tensor_factory()
tf = SharpnessJitter((0.1, 2.0))
output = tf(img_tensor)
assert output.shape == img_tensor.shape
def test_sharpness_jitter_valid_range_float(img_tensor_factory):
img_tensor = img_tensor_factory()
tf = SharpnessJitter(0.5)
output = tf(img_tensor)
assert output.shape == img_tensor.shape
def test_sharpness_jitter_invalid_range_min_negative():
with pytest.raises(ValueError):
SharpnessJitter((-0.1, 2.0))
def test_sharpness_jitter_invalid_range_max_smaller():
with pytest.raises(ValueError):
SharpnessJitter((2.0, 0.1))
def test_save_all_transforms(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
save_all_transforms(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the combined transforms directory exists and contains the right files
combined_transforms_dir = tmp_path / "all"
assert combined_transforms_dir.exists(), "Combined transforms directory was not created."
assert any(combined_transforms_dir.iterdir()), (
"No transformed images found in combined transforms directory."
)
for i in range(1, n_examples + 1):
assert (combined_transforms_dir / f"{i}.png").exists(), (
f"Combined transform image {i}.png was not found."
)
def test_save_each_transform(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
save_each_transform(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the transformed images exist for each transform type
transforms = ["brightness", "contrast", "saturation", "hue", "sharpness"]
for transform in transforms:
transform_dir = tmp_path / transform
assert transform_dir.exists(), f"{transform} directory was not created."
assert any(transform_dir.iterdir()), f"No transformed images found in {transform} directory."
# Check for specific files within each transform directory
expected_files = [f"{i}.png" for i in range(1, n_examples + 1)] + ["min.png", "max.png", "mean.png"]
for file_name in expected_files:
assert (transform_dir / file_name).exists(), (
f"{file_name} was not found in {transform} directory."
)