91 lines
3.2 KiB
Python
91 lines
3.2 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from datasets import Dataset
|
|
|
|
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
|
|
from lerobot.common.datasets.sampler import EpisodeAwareSampler
|
|
from lerobot.common.datasets.utils import (
|
|
hf_transform_to_torch,
|
|
)
|
|
|
|
|
|
def test_drop_n_first_frames():
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
|
"index": [0, 1, 2, 3, 4, 5],
|
|
"episode_index": [0, 0, 1, 2, 2, 2],
|
|
},
|
|
)
|
|
dataset.set_transform(hf_transform_to_torch)
|
|
episode_data_index = calculate_episode_data_index(dataset)
|
|
sampler = EpisodeAwareSampler(episode_data_index, drop_n_first_frames=1)
|
|
assert sampler.indices == [1, 4, 5]
|
|
assert len(sampler) == 3
|
|
assert list(sampler) == [1, 4, 5]
|
|
|
|
|
|
def test_drop_n_last_frames():
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
|
"index": [0, 1, 2, 3, 4, 5],
|
|
"episode_index": [0, 0, 1, 2, 2, 2],
|
|
},
|
|
)
|
|
dataset.set_transform(hf_transform_to_torch)
|
|
episode_data_index = calculate_episode_data_index(dataset)
|
|
sampler = EpisodeAwareSampler(episode_data_index, drop_n_last_frames=1)
|
|
assert sampler.indices == [0, 3, 4]
|
|
assert len(sampler) == 3
|
|
assert list(sampler) == [0, 3, 4]
|
|
|
|
|
|
def test_episode_indices_to_use():
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
|
"index": [0, 1, 2, 3, 4, 5],
|
|
"episode_index": [0, 0, 1, 2, 2, 2],
|
|
},
|
|
)
|
|
dataset.set_transform(hf_transform_to_torch)
|
|
episode_data_index = calculate_episode_data_index(dataset)
|
|
sampler = EpisodeAwareSampler(episode_data_index, episode_indices_to_use=[0, 2])
|
|
assert sampler.indices == [0, 1, 3, 4, 5]
|
|
assert len(sampler) == 5
|
|
assert list(sampler) == [0, 1, 3, 4, 5]
|
|
|
|
|
|
def test_shuffle():
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
|
"index": [0, 1, 2, 3, 4, 5],
|
|
"episode_index": [0, 0, 1, 2, 2, 2],
|
|
},
|
|
)
|
|
dataset.set_transform(hf_transform_to_torch)
|
|
episode_data_index = calculate_episode_data_index(dataset)
|
|
sampler = EpisodeAwareSampler(episode_data_index, shuffle=False)
|
|
assert sampler.indices == [0, 1, 2, 3, 4, 5]
|
|
assert len(sampler) == 6
|
|
assert list(sampler) == [0, 1, 2, 3, 4, 5]
|
|
sampler = EpisodeAwareSampler(episode_data_index, shuffle=True)
|
|
assert sampler.indices == [0, 1, 2, 3, 4, 5]
|
|
assert len(sampler) == 6
|
|
assert set(sampler) == {0, 1, 2, 3, 4, 5}
|