64 lines
2.0 KiB
Python
64 lines
2.0 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import importlib
|
|
|
|
import gymnasium as gym
|
|
import pytest
|
|
import torch
|
|
from gymnasium.utils.env_checker import check_env
|
|
|
|
import lerobot
|
|
from lerobot.common.envs.factory import make_env, make_env_config
|
|
from lerobot.common.envs.utils import preprocess_observation
|
|
from tests.utils import require_env
|
|
|
|
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
|
|
|
|
|
@pytest.mark.parametrize("obs_type", OBS_TYPES)
|
|
@pytest.mark.parametrize("env_name, env_task", lerobot.env_task_pairs)
|
|
@require_env
|
|
def test_env(env_name, env_task, obs_type):
|
|
if env_name == "aloha" and obs_type == "state":
|
|
pytest.skip("`state` observations not available for aloha")
|
|
|
|
package_name = f"gym_{env_name}"
|
|
importlib.import_module(package_name)
|
|
env = gym.make(f"{package_name}/{env_task}", obs_type=obs_type)
|
|
check_env(env.unwrapped, skip_render_check=True)
|
|
env.close()
|
|
|
|
|
|
@pytest.mark.parametrize("env_name", lerobot.available_envs)
|
|
@require_env
|
|
def test_factory(env_name):
|
|
cfg = make_env_config(env_name)
|
|
env = make_env(cfg, n_envs=1)
|
|
obs, _ = env.reset()
|
|
obs = preprocess_observation(obs)
|
|
|
|
# test image keys are float32 in range [0,1]
|
|
for key in obs:
|
|
if "image" not in key:
|
|
continue
|
|
img = obs[key]
|
|
assert img.dtype == torch.float32
|
|
# TODO(rcadene): we assume for now that image normalization takes place in the model
|
|
assert img.max() <= 1.0
|
|
assert img.min() >= 0.0
|
|
|
|
env.close()
|