95 lines
3.1 KiB
Python
95 lines
3.1 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
|
|
from lerobot.common.constants import SCHEDULER_STATE
|
|
from lerobot.common.optim.schedulers import (
|
|
CosineDecayWithWarmupSchedulerConfig,
|
|
DiffuserSchedulerConfig,
|
|
VQBeTSchedulerConfig,
|
|
load_scheduler_state,
|
|
save_scheduler_state,
|
|
)
|
|
|
|
|
|
def test_diffuser_scheduler(optimizer):
|
|
config = DiffuserSchedulerConfig(name="cosine", num_warmup_steps=5)
|
|
scheduler = config.build(optimizer, num_training_steps=100)
|
|
assert isinstance(scheduler, LambdaLR)
|
|
|
|
optimizer.step() # so that we don't get torch warning
|
|
scheduler.step()
|
|
expected_state_dict = {
|
|
"_get_lr_called_within_step": False,
|
|
"_last_lr": [0.0002],
|
|
"_step_count": 2,
|
|
"base_lrs": [0.001],
|
|
"last_epoch": 1,
|
|
"lr_lambdas": [None],
|
|
"verbose": False,
|
|
}
|
|
assert scheduler.state_dict() == expected_state_dict
|
|
|
|
|
|
def test_vqbet_scheduler(optimizer):
|
|
config = VQBeTSchedulerConfig(num_warmup_steps=10, num_vqvae_training_steps=20, num_cycles=0.5)
|
|
scheduler = config.build(optimizer, num_training_steps=100)
|
|
assert isinstance(scheduler, LambdaLR)
|
|
|
|
optimizer.step()
|
|
scheduler.step()
|
|
expected_state_dict = {
|
|
"_get_lr_called_within_step": False,
|
|
"_last_lr": [0.001],
|
|
"_step_count": 2,
|
|
"base_lrs": [0.001],
|
|
"last_epoch": 1,
|
|
"lr_lambdas": [None],
|
|
"verbose": False,
|
|
}
|
|
assert scheduler.state_dict() == expected_state_dict
|
|
|
|
|
|
def test_cosine_decay_with_warmup_scheduler(optimizer):
|
|
config = CosineDecayWithWarmupSchedulerConfig(
|
|
num_warmup_steps=10, num_decay_steps=90, peak_lr=0.01, decay_lr=0.001
|
|
)
|
|
scheduler = config.build(optimizer, num_training_steps=100)
|
|
assert isinstance(scheduler, LambdaLR)
|
|
|
|
optimizer.step()
|
|
scheduler.step()
|
|
expected_state_dict = {
|
|
"_get_lr_called_within_step": False,
|
|
"_last_lr": [0.0001818181818181819],
|
|
"_step_count": 2,
|
|
"base_lrs": [0.001],
|
|
"last_epoch": 1,
|
|
"lr_lambdas": [None],
|
|
"verbose": False,
|
|
}
|
|
assert scheduler.state_dict() == expected_state_dict
|
|
|
|
|
|
def test_save_scheduler_state(scheduler, tmp_path):
|
|
save_scheduler_state(scheduler, tmp_path)
|
|
assert (tmp_path / SCHEDULER_STATE).is_file()
|
|
|
|
|
|
def test_save_load_scheduler_state(scheduler, tmp_path):
|
|
save_scheduler_state(scheduler, tmp_path)
|
|
loaded_scheduler = load_scheduler_state(scheduler, tmp_path)
|
|
|
|
assert scheduler.state_dict() == loaded_scheduler.state_dict()
|