lerobot/lerobot/common/utils.py

111 lines
3.6 KiB
Python

import logging
import os.path as osp
import random
from datetime import datetime
from pathlib import Path
import hydra
import numpy as np
import torch
from omegaconf import DictConfig
def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
"""Given a string, return a torch.device with checks on whether the device is available."""
match cfg_device:
case "cuda":
assert torch.cuda.is_available()
device = torch.device("cuda")
case "mps":
assert torch.backends.mps.is_available()
device = torch.device("mps")
case "cpu":
device = torch.device("cpu")
if log:
logging.warning("Using CPU, this will be slow.")
case _:
device = torch.device(cfg_device)
if log:
logging.warning(f"Using custom {cfg_device} device.")
return device
def set_global_seed(seed):
"""Set seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def init_logging():
def custom_format(record):
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
fnameline = f"{record.pathname}:{record.lineno}"
message = f"{record.levelname} {dt} {fnameline[-15:]:>15} {record.msg}"
return message
logging.basicConfig(level=logging.INFO)
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
formatter = logging.Formatter()
formatter.format = custom_format
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logging.getLogger().addHandler(console_handler)
def format_big_number(num):
suffixes = ["", "K", "M", "B", "T", "Q"]
divisor = 1000.0
for suffix in suffixes:
if abs(num) < divisor:
return f"{num:.0f}{suffix}"
num /= divisor
return num
def _relative_path_between(path1: Path, path2: Path) -> Path:
"""Returns path1 relative to path2."""
path1 = path1.absolute()
path2 = path2.absolute()
try:
return path1.relative_to(path2)
except ValueError: # most likely because path1 is not a subpath of path2
common_parts = Path(osp.commonpath([path1, path2])).parts
return Path(
"/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
)
def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> DictConfig:
"""Initialize a Hydra config given only the path to the relevant config file.
For config resolution, it is assumed that the config file's parent is the Hydra config dir.
"""
# TODO(alexander-soare): Resolve configs without Hydra initialization.
hydra.core.global_hydra.GlobalHydra.instance().clear()
# Hydra needs a path relative to this file.
hydra.initialize(
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent))
)
cfg = hydra.compose(Path(config_path).stem, overrides)
return cfg
def print_cuda_memory_usage():
import gc
gc.collect()
# Also clear the cache if you want to fully release the memory
torch.cuda.empty_cache()
print("Current GPU Memory Allocated: {:.2f} MB".format(torch.cuda.memory_allocated(0) / 1024**2))
print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))