296 lines
10 KiB
Python
296 lines
10 KiB
Python
import logging
|
|
from pathlib import Path
|
|
|
|
import hydra
|
|
import numpy as np
|
|
import torch
|
|
|
|
from lerobot.common.datasets.factory import make_dataset
|
|
from lerobot.common.datasets.utils import cycle
|
|
from lerobot.common.envs.factory import make_env
|
|
from lerobot.common.logger import Logger, log_output_dir
|
|
from lerobot.common.policies.factory import make_policy
|
|
from lerobot.common.utils import (
|
|
format_big_number,
|
|
get_safe_torch_device,
|
|
init_logging,
|
|
set_global_seed,
|
|
)
|
|
from lerobot.scripts.eval import eval_policy
|
|
|
|
|
|
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
|
def train_cli(cfg: dict):
|
|
train(
|
|
cfg,
|
|
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
|
|
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
|
|
)
|
|
|
|
|
|
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
|
|
from hydra import compose, initialize
|
|
|
|
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
|
initialize(config_path=config_path)
|
|
cfg = compose(config_name=config_name)
|
|
train(cfg, out_dir=out_dir, job_name=job_name)
|
|
|
|
|
|
def log_train_info(logger, info, step, cfg, dataset, is_offline):
|
|
loss = info["loss"]
|
|
grad_norm = info["grad_norm"]
|
|
lr = info["lr"]
|
|
update_s = info["update_s"]
|
|
|
|
# A sample is an (observation,action) pair, where observation and action
|
|
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
|
|
num_samples = (step + 1) * cfg.policy.batch_size
|
|
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
|
|
num_episodes = num_samples / avg_samples_per_ep
|
|
num_epochs = num_samples / dataset.num_samples
|
|
log_items = [
|
|
f"step:{format_big_number(step)}",
|
|
# number of samples seen during training
|
|
f"smpl:{format_big_number(num_samples)}",
|
|
# number of episodes seen during training
|
|
f"ep:{format_big_number(num_episodes)}",
|
|
# number of time all unique samples are seen
|
|
f"epch:{num_epochs:.2f}",
|
|
f"loss:{loss:.3f}",
|
|
f"grdn:{grad_norm:.3f}",
|
|
f"lr:{lr:0.1e}",
|
|
# in seconds
|
|
f"updt_s:{update_s:.3f}",
|
|
]
|
|
logging.info(" ".join(log_items))
|
|
|
|
info["step"] = step
|
|
info["num_samples"] = num_samples
|
|
info["num_episodes"] = num_episodes
|
|
info["num_epochs"] = num_epochs
|
|
info["is_offline"] = is_offline
|
|
|
|
logger.log_dict(info, step, mode="train")
|
|
|
|
|
|
def log_eval_info(logger, info, step, cfg, dataset, is_offline):
|
|
eval_s = info["eval_s"]
|
|
avg_sum_reward = info["avg_sum_reward"]
|
|
pc_success = info["pc_success"]
|
|
|
|
# A sample is an (observation,action) pair, where observation and action
|
|
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
|
|
num_samples = (step + 1) * cfg.policy.batch_size
|
|
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
|
|
num_episodes = num_samples / avg_samples_per_ep
|
|
num_epochs = num_samples / dataset.num_samples
|
|
log_items = [
|
|
f"step:{format_big_number(step)}",
|
|
# number of samples seen during training
|
|
f"smpl:{format_big_number(num_samples)}",
|
|
# number of episodes seen during training
|
|
f"ep:{format_big_number(num_episodes)}",
|
|
# number of time all unique samples are seen
|
|
f"epch:{num_epochs:.2f}",
|
|
f"∑rwrd:{avg_sum_reward:.3f}",
|
|
f"success:{pc_success:.1f}%",
|
|
f"eval_s:{eval_s:.3f}",
|
|
]
|
|
logging.info(" ".join(log_items))
|
|
|
|
info["step"] = step
|
|
info["num_samples"] = num_samples
|
|
info["num_episodes"] = num_episodes
|
|
info["num_epochs"] = num_epochs
|
|
info["is_offline"] = is_offline
|
|
|
|
logger.log_dict(info, step, mode="eval")
|
|
|
|
|
|
def train(cfg: dict, out_dir=None, job_name=None):
|
|
if out_dir is None:
|
|
raise NotImplementedError()
|
|
if job_name is None:
|
|
raise NotImplementedError()
|
|
if cfg.online_steps > 0:
|
|
assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps"
|
|
|
|
init_logging()
|
|
|
|
# Check device is available
|
|
get_safe_torch_device(cfg.device, log=True)
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
set_global_seed(cfg.seed)
|
|
|
|
logging.info("make_dataset")
|
|
dataset = make_dataset(cfg)
|
|
|
|
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
|
|
# if cfg.policy.balanced_sampling:
|
|
# logging.info("make online_buffer")
|
|
# num_traj_per_batch = cfg.policy.batch_size
|
|
|
|
# online_sampler = PrioritizedSliceSampler(
|
|
# max_capacity=100_000,
|
|
# alpha=cfg.policy.per_alpha,
|
|
# beta=cfg.policy.per_beta,
|
|
# num_slices=num_traj_per_batch,
|
|
# strict_length=True,
|
|
# )
|
|
|
|
# online_buffer = TensorDictReplayBuffer(
|
|
# storage=LazyMemmapStorage(100_000),
|
|
# sampler=online_sampler,
|
|
# transform=dataset.transform,
|
|
# )
|
|
|
|
logging.info("make_env")
|
|
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
|
|
|
|
logging.info("make_policy")
|
|
policy = make_policy(cfg)
|
|
|
|
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
|
num_total_params = sum(p.numel() for p in policy.parameters())
|
|
|
|
# log metrics to terminal and wandb
|
|
logger = Logger(out_dir, job_name, cfg)
|
|
|
|
log_output_dir(out_dir)
|
|
logging.info(f"{cfg.env.task=}")
|
|
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
|
|
logging.info(f"{cfg.online_steps=}")
|
|
logging.info(f"{cfg.env.action_repeat=}")
|
|
logging.info(f"{dataset.num_samples=} ({format_big_number(dataset.num_samples)})")
|
|
logging.info(f"{dataset.num_episodes=}")
|
|
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
|
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
|
|
|
# Note: this helper will be used in offline and online training loops.
|
|
def _maybe_eval_and_maybe_save(step):
|
|
if step % cfg.eval_freq == 0:
|
|
logging.info(f"Eval policy at step {step}")
|
|
eval_info, first_video = eval_policy(
|
|
env,
|
|
policy,
|
|
return_first_video=True,
|
|
video_dir=Path(out_dir) / "eval",
|
|
save_video=True,
|
|
transform=dataset.transform,
|
|
seed=cfg.seed,
|
|
)
|
|
log_eval_info(logger, eval_info["aggregated"], step, cfg, dataset, is_offline)
|
|
if cfg.wandb.enable:
|
|
logger.log_video(first_video, step, mode="eval")
|
|
logging.info("Resume training")
|
|
|
|
if cfg.save_model and step % cfg.save_freq == 0:
|
|
logging.info(f"Checkpoint policy after step {step}")
|
|
logger.save_model(policy, identifier=step)
|
|
logging.info("Resume training")
|
|
|
|
step = 0 # number of policy update (forward + backward + optim)
|
|
|
|
is_offline = True
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
num_workers=4,
|
|
batch_size=cfg.policy.batch_size,
|
|
shuffle=True,
|
|
pin_memory=cfg.device != "cpu",
|
|
drop_last=True,
|
|
)
|
|
dl_iter = cycle(dataloader)
|
|
for offline_step in range(cfg.offline_steps):
|
|
if offline_step == 0:
|
|
logging.info("Start offline training on a fixed dataset")
|
|
policy.train()
|
|
batch = next(dl_iter)
|
|
|
|
for key in batch:
|
|
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
|
|
|
train_info = policy.update(batch, step=step)
|
|
|
|
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
|
if step % cfg.log_freq == 0:
|
|
log_train_info(logger, train_info, step, cfg, dataset, is_offline)
|
|
|
|
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass in
|
|
# step + 1.
|
|
_maybe_eval_and_maybe_save(step + 1)
|
|
|
|
step += 1
|
|
|
|
raise NotImplementedError()
|
|
|
|
demo_buffer = dataset if cfg.policy.balanced_sampling else None
|
|
online_step = 0
|
|
is_offline = False
|
|
for env_step in range(cfg.online_steps):
|
|
if env_step == 0:
|
|
logging.info("Start online training by interacting with environment")
|
|
# TODO: add configurable number of rollout? (default=1)
|
|
with torch.no_grad():
|
|
rollout = env.rollout(
|
|
max_steps=cfg.env.episode_length,
|
|
policy=policy,
|
|
auto_cast_to_device=True,
|
|
)
|
|
|
|
assert (
|
|
len(rollout.batch_size) == 2
|
|
), "2 dimensions expected: number of env in parallel x max number of steps during rollout"
|
|
|
|
num_parallel_env = rollout.batch_size[0]
|
|
if num_parallel_env != 1:
|
|
# TODO(rcadene): when num_parallel_env > 1, rollout["episode"] needs to be properly set and we need to add tests
|
|
raise NotImplementedError()
|
|
|
|
num_max_steps = rollout.batch_size[1]
|
|
assert num_max_steps <= cfg.env.episode_length
|
|
|
|
# reshape to have a list of steps to insert into online_buffer
|
|
rollout = rollout.reshape(num_parallel_env * num_max_steps)
|
|
|
|
# set same episode index for all time steps contained in this rollout
|
|
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
|
|
# online_buffer.extend(rollout)
|
|
|
|
ep_sum_reward = rollout["next", "reward"].sum()
|
|
ep_max_reward = rollout["next", "reward"].max()
|
|
ep_success = rollout["next", "success"].any()
|
|
rollout_info = {
|
|
"avg_sum_reward": np.nanmean(ep_sum_reward),
|
|
"avg_max_reward": np.nanmean(ep_max_reward),
|
|
"pc_success": np.nanmean(ep_success) * 100,
|
|
"env_step": env_step,
|
|
"ep_length": len(rollout),
|
|
}
|
|
|
|
for _ in range(cfg.policy.utd):
|
|
train_info = policy.update(
|
|
# online_buffer,
|
|
step,
|
|
demo_buffer=demo_buffer,
|
|
)
|
|
if step % cfg.log_freq == 0:
|
|
train_info.update(rollout_info)
|
|
log_train_info(logger, train_info, step, cfg, dataset, is_offline)
|
|
|
|
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass
|
|
# in step + 1.
|
|
_maybe_eval_and_maybe_save(step + 1)
|
|
|
|
step += 1
|
|
online_step += 1
|
|
|
|
logging.info("End of training")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train_cli()
|