lerobot/lerobot/scripts/train.py

296 lines
10 KiB
Python

import logging
from pathlib import Path
import hydra
import numpy as np
import torch
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import (
format_big_number,
get_safe_torch_device,
init_logging,
set_global_seed,
)
from lerobot.scripts.eval import eval_policy
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def log_train_info(logger, info, step, cfg, dataset, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]
lr = info["lr"]
update_s = info["update_s"]
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_samples
log_items = [
f"step:{format_big_number(step)}",
# number of samples seen during training
f"smpl:{format_big_number(num_samples)}",
# number of episodes seen during training
f"ep:{format_big_number(num_episodes)}",
# number of time all unique samples are seen
f"epch:{num_epochs:.2f}",
f"loss:{loss:.3f}",
f"grdn:{grad_norm:.3f}",
f"lr:{lr:0.1e}",
# in seconds
f"updt_s:{update_s:.3f}",
]
logging.info(" ".join(log_items))
info["step"] = step
info["num_samples"] = num_samples
info["num_episodes"] = num_episodes
info["num_epochs"] = num_epochs
info["is_offline"] = is_offline
logger.log_dict(info, step, mode="train")
def log_eval_info(logger, info, step, cfg, dataset, is_offline):
eval_s = info["eval_s"]
avg_sum_reward = info["avg_sum_reward"]
pc_success = info["pc_success"]
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = dataset.num_samples / dataset.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / dataset.num_samples
log_items = [
f"step:{format_big_number(step)}",
# number of samples seen during training
f"smpl:{format_big_number(num_samples)}",
# number of episodes seen during training
f"ep:{format_big_number(num_episodes)}",
# number of time all unique samples are seen
f"epch:{num_epochs:.2f}",
f"∑rwrd:{avg_sum_reward:.3f}",
f"success:{pc_success:.1f}%",
f"eval_s:{eval_s:.3f}",
]
logging.info(" ".join(log_items))
info["step"] = step
info["num_samples"] = num_samples
info["num_episodes"] = num_episodes
info["num_epochs"] = num_epochs
info["is_offline"] = is_offline
logger.log_dict(info, step, mode="eval")
def train(cfg: dict, out_dir=None, job_name=None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
if cfg.online_steps > 0:
assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps"
init_logging()
# Check device is available
get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(cfg.seed)
logging.info("make_dataset")
dataset = make_dataset(cfg)
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
# if cfg.policy.balanced_sampling:
# logging.info("make online_buffer")
# num_traj_per_batch = cfg.policy.batch_size
# online_sampler = PrioritizedSliceSampler(
# max_capacity=100_000,
# alpha=cfg.policy.per_alpha,
# beta=cfg.policy.per_beta,
# num_slices=num_traj_per_batch,
# strict_length=True,
# )
# online_buffer = TensorDictReplayBuffer(
# storage=LazyMemmapStorage(100_000),
# sampler=online_sampler,
# transform=dataset.transform,
# )
logging.info("make_env")
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
logging.info("make_policy")
policy = make_policy(cfg)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
# log metrics to terminal and wandb
logger = Logger(out_dir, job_name, cfg)
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
logging.info(f"{cfg.online_steps=}")
logging.info(f"{cfg.env.action_repeat=}")
logging.info(f"{dataset.num_samples=} ({format_big_number(dataset.num_samples)})")
logging.info(f"{dataset.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
# Note: this helper will be used in offline and online training loops.
def _maybe_eval_and_maybe_save(step):
if step % cfg.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
eval_info, first_video = eval_policy(
env,
policy,
return_first_video=True,
video_dir=Path(out_dir) / "eval",
save_video=True,
transform=dataset.transform,
seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, dataset, is_offline)
if cfg.wandb.enable:
logger.log_video(first_video, step, mode="eval")
logging.info("Resume training")
if cfg.save_model and step % cfg.save_freq == 0:
logging.info(f"Checkpoint policy after step {step}")
logger.save_model(policy, identifier=step)
logging.info("Resume training")
step = 0 # number of policy update (forward + backward + optim)
is_offline = True
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=cfg.policy.batch_size,
shuffle=True,
pin_memory=cfg.device != "cpu",
drop_last=True,
)
dl_iter = cycle(dataloader)
for offline_step in range(cfg.offline_steps):
if offline_step == 0:
logging.info("Start offline training on a fixed dataset")
policy.train()
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = policy.update(batch, step=step)
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.log_freq == 0:
log_train_info(logger, train_info, step, cfg, dataset, is_offline)
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass in
# step + 1.
_maybe_eval_and_maybe_save(step + 1)
step += 1
raise NotImplementedError()
demo_buffer = dataset if cfg.policy.balanced_sampling else None
online_step = 0
is_offline = False
for env_step in range(cfg.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length,
policy=policy,
auto_cast_to_device=True,
)
assert (
len(rollout.batch_size) == 2
), "2 dimensions expected: number of env in parallel x max number of steps during rollout"
num_parallel_env = rollout.batch_size[0]
if num_parallel_env != 1:
# TODO(rcadene): when num_parallel_env > 1, rollout["episode"] needs to be properly set and we need to add tests
raise NotImplementedError()
num_max_steps = rollout.batch_size[1]
assert num_max_steps <= cfg.env.episode_length
# reshape to have a list of steps to insert into online_buffer
rollout = rollout.reshape(num_parallel_env * num_max_steps)
# set same episode index for all time steps contained in this rollout
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
# online_buffer.extend(rollout)
ep_sum_reward = rollout["next", "reward"].sum()
ep_max_reward = rollout["next", "reward"].max()
ep_success = rollout["next", "success"].any()
rollout_info = {
"avg_sum_reward": np.nanmean(ep_sum_reward),
"avg_max_reward": np.nanmean(ep_max_reward),
"pc_success": np.nanmean(ep_success) * 100,
"env_step": env_step,
"ep_length": len(rollout),
}
for _ in range(cfg.policy.utd):
train_info = policy.update(
# online_buffer,
step,
demo_buffer=demo_buffer,
)
if step % cfg.log_freq == 0:
train_info.update(rollout_info)
log_train_info(logger, train_info, step, cfg, dataset, is_offline)
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass
# in step + 1.
_maybe_eval_and_maybe_save(step + 1)
step += 1
online_step += 1
logging.info("End of training")
if __name__ == "__main__":
train_cli()