lerobot/lerobot/common/robot_devices/robots/manipulator.py

704 lines
31 KiB
Python

import json
import logging
import time
import warnings
from dataclasses import dataclass, field, replace
from pathlib import Path
from typing import Sequence
import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import Camera
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
########################################################################
# Calibration logic
########################################################################
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def compute_nearest_rounded_position(position, models):
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
return nearest_pos.astype(position.dtype)
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "koch", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
homing_offset = zero_target_pos - zero_nearest_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
homing_offset = rotated_target_pos - rotated_nearest_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type == "aloha" and "gripper" in arm.motor_names:
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
calib_data = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_mode,
"motor_names": arm.motor_names,
}
return calib_data
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
):
# Cap relative action target magnitude for safety.
diff = goal_pos - present_pos
max_relative_target = torch.tensor(max_relative_target)
safe_diff = torch.minimum(diff, max_relative_target)
safe_diff = torch.maximum(safe_diff, -max_relative_target)
safe_goal_pos = present_pos + safe_diff
if not torch.allclose(goal_pos, safe_goal_pos):
logging.warning(
"Relative goal position magnitude had to be clamped to be safe.\n"
f" requested relative goal position target: {diff}\n"
f" clamped relative goal position target: {safe_diff}"
)
return safe_goal_pos
########################################################################
# Manipulator robot
########################################################################
@dataclass
class ManipulatorRobotConfig:
"""
Example of usage:
```python
ManipulatorRobotConfig()
```
"""
# Define all components of the robot
robot_type: str | None = None
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
cameras: dict[str, Camera] = field(default_factory=lambda: {})
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
def __setattr__(self, prop: str, val):
if prop == "max_relative_target" and val is not None and isinstance(val, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(val):
raise ValueError(
f"len(max_relative_target)={len(val)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
super().__setattr__(prop, val)
class ManipulatorRobot:
# TODO(rcadene): Implement force feedback
"""This class allows to control any manipulator robot of various number of motors.
Non exaustive list of robots:
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
- [Aloha](https://www.trossenrobotics.com/aloha-kits) developed by Trossen Robotics
Example of highest frequency teleoperation without camera:
```python
# Defines how to communicate with the motors of the leader and follower arms
leader_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
}
follower_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
}
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
)
# Connect motors buses and cameras if any (Required)
robot.connect()
while True:
robot.teleop_step()
```
Example of highest frequency data collection without camera:
```python
# Assumes leader and follower arms have been instantiated already (see first example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of highest frequency data collection with cameras:
```python
# Defines how to communicate with 2 cameras connected to the computer.
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
# can be reached respectively using the camera indices 0 and 1. These indices can be
# arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices.
cameras = {
"laptop": OpenCVCamera(camera_index=0, fps=30, width=640, height=480),
"phone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480),
}
# Assumes leader and follower arms have been instantiated already (see first example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
cameras=cameras,
)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of controlling the robot with a policy (without running multiple policies in parallel to ensure highest frequency):
```python
# Assumes leader and follower arms + cameras have been instantiated already (see previous example)
robot = ManipulatorRobot(
robot_type="koch",
calibration_dir=".cache/calibration/koch",
leader_arms=leader_arms,
follower_arms=follower_arms,
cameras=cameras,
)
robot.connect()
while True:
# Uses the follower arms and cameras to capture an observation
observation = robot.capture_observation()
# Assumes a policy has been instantiated
with torch.inference_mode():
action = policy.select_action(observation)
# Orders the robot to move
robot.send_action(action)
```
Example of disconnecting which is not mandatory since we disconnect when the object is deleted:
```python
robot.disconnect()
```
"""
def __init__(
self,
config: ManipulatorRobotConfig | None = None,
calibration_dir: Path = ".cache/calibration/koch",
**kwargs,
):
if config is None:
config = ManipulatorRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.calibration_dir = Path(calibration_dir)
self.robot_type = self.config.robot_type
self.leader_arms = self.config.leader_arms
self.follower_arms = self.config.follower_arms
self.cameras = self.config.cameras
self.is_connected = False
self.logs = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
if not self.leader_arms and not self.follower_arms and not self.cameras:
raise ValueError(
"ManipulatorRobot doesn't have any device to connect. See example of usage in docstring of the class."
)
# Connect the arms
for name in self.follower_arms:
print(f"Connecting {name} follower arm.")
self.follower_arms[name].connect()
print(f"Connecting {name} leader arm.")
self.leader_arms[name].connect()
# We assume that at connection time, arms are in a rest position, and torque can
# be safely disabled to run calibration and/or set robot preset configurations.
for name in self.follower_arms:
self.follower_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
self.activate_calibration()
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
if self.robot_type == "koch":
self.set_koch_robot_preset()
elif self.robot_type == "aloha":
self.set_aloha_robot_preset()
else:
warnings.warn(f"No preset found for robot type: {self.robot_type}", stacklevel=1)
# Enable torque on all motors of the follower arms
for name in self.follower_arms:
print(f"Activating torque on {name} follower arm.")
self.follower_arms[name].write("Torque_Enable", 1)
if self.config.gripper_open_degree is not None:
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
# Connect the cameras
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = True
def activate_calibration(self):
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
def load_or_run_calibration_(name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Koch motors
arm.write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
arm.write("Operating_Mode", 5, "gripper")
for name in self.follower_arms:
set_operating_mode_(self.follower_arms[name])
# Set better PID values to close the gap between recorded states and actions
# TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
if self.config.gripper_open_degree is not None:
for name in self.leader_arms:
set_operating_mode_(self.leader_arms[name])
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
# so that we can use it as a trigger to close the gripper of the follower arms.
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
def set_aloha_robot_preset(self):
def set_shadow_(arm):
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
# As a result, if only one of them is required to move to a certain position,
# the other will follow. This is to avoid breaking the motors.
if "shoulder_shadow" in arm.motor_names:
shoulder_idx = arm.read("ID", "shoulder")
arm.write("Secondary_ID", shoulder_idx, "shoulder_shadow")
if "elbow_shadow" in arm.motor_names:
elbow_idx = arm.read("ID", "elbow")
arm.write("Secondary_ID", elbow_idx, "elbow_shadow")
for name in self.follower_arms:
set_shadow_(self.follower_arms[name])
for name in self.leader_arms:
set_shadow_(self.leader_arms[name])
for name in self.follower_arms:
# Set a velocity limit of 131 as advised by Trossen Robotics
self.follower_arms[name].write("Velocity_Limit", 131)
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [
name for name in self.follower_arms[name].motor_names if name != "gripper"
]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Aloha motors
self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
# It can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# 5 corresponds to Current Controlled Position on Aloha gripper follower "xm430-w350"
self.follower_arms[name].write("Operating_Mode", 5, "gripper")
# Note: We can't enable torque on the leader gripper since "xc430-w150" doesn't have
# a Current Controlled Position mode.
if self.config.gripper_open_degree is not None:
warnings.warn(
f"`gripper_open_degree` is set to {self.config.gripper_open_degree}, but None is expected for Aloha instead",
stacklevel=1,
)
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
# Prepare to assign the position of the leader to the follower
leader_pos = {}
for name in self.leader_arms:
before_lread_t = time.perf_counter()
leader_pos[name] = self.leader_arms[name].read("Present_Position")
leader_pos[name] = torch.from_numpy(leader_pos[name])
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
# Send goal position to the follower
follower_goal_pos = {}
for name in self.follower_arms:
before_fwrite_t = time.perf_counter()
goal_pos = leader_pos[name]
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.follower_arms[name].read("Present_Position")
present_pos = torch.from_numpy(present_pos)
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Used when record_data=True
follower_goal_pos[name] = goal_pos
goal_pos = goal_pos.numpy().astype(np.int32)
self.follower_arms[name].write("Goal_Position", goal_pos)
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
# Early exit when recording data is not requested
if not record_data:
return
# TODO(rcadene): Add velocity and other info
# Read follower position
follower_pos = {}
for name in self.follower_arms:
before_fread_t = time.perf_counter()
follower_pos[name] = self.follower_arms[name].read("Present_Position")
follower_pos[name] = torch.from_numpy(follower_pos[name])
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = torch.cat(state)
# Create action by concatenating follower goal position
action = []
for name in self.follower_arms:
if name in follower_goal_pos:
action.append(follower_goal_pos[name])
action = torch.cat(action)
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def capture_observation(self):
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
# Read follower position
follower_pos = {}
for name in self.follower_arms:
before_fread_t = time.perf_counter()
follower_pos[name] = self.follower_arms[name].read("Present_Position")
follower_pos[name] = torch.from_numpy(follower_pos[name])
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = torch.cat(state)
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries and format to pytorch
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
"""Command the follower arms to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action: tensor containing the concatenated goal positions for the follower arms.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
from_idx = 0
to_idx = 0
action_sent = []
for name in self.follower_arms:
# Get goal position of each follower arm by splitting the action vector
to_idx += len(self.follower_arms[name].motor_names)
goal_pos = action[from_idx:to_idx]
from_idx = to_idx
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.follower_arms[name].read("Present_Position")
present_pos = torch.from_numpy(present_pos)
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Save tensor to concat and return
action_sent.append(goal_pos)
# Send goal position to each follower
goal_pos = goal_pos.numpy().astype(np.int32)
self.follower_arms[name].write("Goal_Position", goal_pos)
return torch.cat(action_sent)
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
for name in self.follower_arms:
self.follower_arms[name].disconnect()
for name in self.leader_arms:
self.leader_arms[name].disconnect()
for name in self.cameras:
self.cameras[name].disconnect()
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()