lerobot/lerobot/common/robot_devices/robots/koch.py

499 lines
18 KiB
Python

import pickle
from dataclasses import dataclass, field, replace
from pathlib import Path
import time
import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import Camera
from lerobot.common.robot_devices.motors.dynamixel import (
DriveMode,
DynamixelMotorsBus,
OperatingMode,
TorqueMode,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
########################################################################
# Calibration logic
########################################################################
# TARGET_HORIZONTAL_POSITION = motor_position_to_angle(np.array([0, -1024, 1024, 0, -1024, 0]))
# TARGET_90_DEGREE_POSITION = motor_position_to_angle(np.array([1024, 0, 0, 1024, 0, -1024]))
# GRIPPER_OPEN = motor_position_to_angle(np.array([-400]))
TARGET_HORIZONTAL_POSITION = np.array([0, -1024, 1024, 0, -1024, 0])
TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 1024, 0, -1024])
GRIPPER_OPEN = np.array([-400])
def apply_homing_offset(values: np.array, homing_offset: np.array) -> np.array:
for i in range(len(values)):
if values[i] is not None:
values[i] += homing_offset[i]
return values
def apply_drive_mode(values: np.array, drive_mode: np.array) -> np.array:
for i in range(len(values)):
if values[i] is not None and drive_mode[i]:
values[i] = -values[i]
return values
def apply_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
values = apply_drive_mode(values, drive_mode)
values = apply_homing_offset(values, homing_offset)
return values
def revert_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
"""
Transform working position into real position for the robot.
"""
values = apply_homing_offset(
values,
np.array([-homing_offset if homing_offset is not None else None for homing_offset in homing_offset]),
)
values = apply_drive_mode(values, drive_mode)
return values
def revert_appropriate_positions(positions: np.array, drive_mode: list[bool]) -> np.array:
for i, revert in enumerate(drive_mode):
if not revert and positions[i] is not None:
positions[i] = -positions[i]
return positions
def compute_corrections(positions: np.array, drive_mode: list[bool], target_position: np.array) -> np.array:
correction = revert_appropriate_positions(positions, drive_mode)
for i in range(len(positions)):
if correction[i] is not None:
if drive_mode[i]:
correction[i] -= target_position[i]
else:
correction[i] += target_position[i]
return correction
def compute_nearest_rounded_positions(positions: np.array) -> np.array:
return np.array(
[
round(positions[i] / 1024) * 1024 if positions[i] is not None else None
for i in range(len(positions))
]
)
def compute_homing_offset(
arm: DynamixelMotorsBus, drive_mode: list[bool], target_position: np.array
) -> np.array:
# Get the present positions of the servos
present_positions = apply_calibration(
arm.read("Present_Position"), np.array([0, 0, 0, 0, 0, 0]), drive_mode
)
nearest_positions = compute_nearest_rounded_positions(present_positions)
correction = compute_corrections(nearest_positions, drive_mode, target_position)
return correction
def compute_drive_mode(arm: DynamixelMotorsBus, offset: np.array):
# Get current positions
present_positions = apply_calibration(
arm.read("Present_Position"), offset, np.array([False, False, False, False, False, False])
)
nearest_positions = compute_nearest_rounded_positions(present_positions)
# construct 'drive_mode' list comparing nearest_positions and TARGET_90_DEGREE_POSITION
drive_mode = []
for i in range(len(nearest_positions)):
drive_mode.append(nearest_positions[i] != TARGET_90_DEGREE_POSITION[i])
return drive_mode
def reset_arm(arm: MotorsBus):
# To be configured, all servos must be in "torque disable" mode
arm.write("Torque_Enable", TorqueMode.DISABLED.value)
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
arm.write("Operating_Mode", OperatingMode.EXTENDED_POSITION.value, all_motors_except_gripper)
# TODO(rcadene): why?
# Use 'position control current based' for gripper
arm.write("Operating_Mode", OperatingMode.CURRENT_CONTROLLED_POSITION.value, "gripper")
# Make sure the native calibration (homing offset abd drive mode) is disabled, since we use our own calibration layer to be more generic
arm.write("Homing_Offset", 0)
arm.write("Drive_Mode", DriveMode.NON_INVERTED.value)
def run_arm_calibration(arm: MotorsBus, name: str):
reset_arm(arm)
# TODO(rcadene): document what position 1 mean
print(f"Please move the '{name}' arm to the horizontal position (gripper fully closed)")
input("Press Enter to continue...")
horizontal_homing_offset = compute_homing_offset(
arm, [False, False, False, False, False, False], TARGET_HORIZONTAL_POSITION
)
# TODO(rcadene): document what position 2 mean
print(f"Please move the '{name}' arm to the 90 degree position (gripper fully open)")
input("Press Enter to continue...")
drive_mode = compute_drive_mode(arm, horizontal_homing_offset)
homing_offset = compute_homing_offset(arm, drive_mode, TARGET_90_DEGREE_POSITION)
# Invert offset for all drive_mode servos
for i in range(len(drive_mode)):
if drive_mode[i]:
homing_offset[i] = -homing_offset[i]
print("Calibration is done!")
print("=====================================")
print(" HOMING_OFFSET: ", " ".join([str(i) for i in homing_offset]))
print(" DRIVE_MODE: ", " ".join([str(i) for i in drive_mode]))
print("=====================================")
return homing_offset, drive_mode
########################################################################
# Alexander Koch robot arm
########################################################################
@dataclass
class KochRobotConfig:
"""
Example of usage:
```python
KochRobotConfig()
```
"""
# Define all the components of the robot
leader_arms: dict[str, MotorsBus] = field(
default_factory=lambda: {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
}
)
follower_arms: dict[str, MotorsBus] = field(
default_factory=lambda: {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
}
)
cameras: dict[str, Camera] = field(default_factory=lambda: {})
class KochRobot:
"""Tau Robotics: https://tau-robotics.com
Example of highest frequency teleoperation without camera:
```python
# Defines how to communicate with the motors of the leader and follower arms
leader_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
}
follower_arms = {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
}
robot = KochRobot(leader_arms, follower_arms)
# Connect motors buses and cameras if any (Required)
robot.connect()
while True:
robot.teleop_step()
```
Example of highest frequency data collection without camera:
```python
# Assumes leader and follower arms have been instantiated already (see first example)
robot = KochRobot(leader_arms, follower_arms)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of highest frequency data collection with cameras:
```python
# Defines how to communicate with 2 cameras connected to the computer.
# Here, the webcam of the mackbookpro and the iphone (connected in USB to the macbookpro)
# can be reached respectively using the camera indices 0 and 1. These indices can be
# arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices.
cameras = {
"macbookpro": OpenCVCamera(camera_index=0, fps=30, width=640, height=480),
"iphone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480),
}
# Assumes leader and follower arms have been instantiated already (see first example)
robot = KochRobot(leader_arms, follower_arms, cameras)
robot.connect()
while True:
observation, action = robot.teleop_step(record_data=True)
```
Example of controlling the robot with a policy (without running multiple policies in parallel to ensure highest frequency):
```python
# Assumes leader and follower arms + cameras have been instantiated already (see previous example)
robot = KochRobot(leader_arms, follower_arms, cameras)
robot.connect()
while True:
# Uses the follower arms and cameras to capture an observation
observation = robot.capture_observation()
# Assumes a policy has been instantiated
with torch.inference_mode():
action = policy.select_action(observation)
# Orders the robot to move
robot.send_action(action)
```
"""
def __init__(
self,
config: KochRobotConfig | None = None,
calibration_path: Path = ".cache/calibration/koch.pkl",
**kwargs,
):
if config is None:
config = KochRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.calibration_path = Path(calibration_path)
self.leader_arms = self.config.leader_arms
self.follower_arms = self.config.follower_arms
self.cameras = self.config.cameras
self.is_connected = False
self.logs = {}
def connect(self):
if self.is_connected:
raise ValueError(f"KochRobot is already connected.")
for name in self.follower_arms:
self.follower_arms[name].connect()
self.leader_arms[name].connect()
if self.calibration_path.exists():
# Reset all arms before setting calibration
for name in self.follower_arms:
reset_arm(self.follower_arms[name])
for name in self.leader_arms:
reset_arm(self.leader_arms[name])
with open(self.calibration_path, "rb") as f:
calibration = pickle.load(f)
else:
calibration = self.run_calibration()
self.calibration_path.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_path, "wb") as f:
pickle.dump(calibration, f)
for name in self.follower_arms:
self.follower_arms[name].set_calibration(calibration[f"follower_{name}"])
self.follower_arms[name].write("Torque_Enable", 1)
for name in self.leader_arms:
self.leader_arms[name].set_calibration(calibration[f"leader_{name}"])
# TODO(rcadene): add comments
self.leader_arms[name].write("Goal_Position", GRIPPER_OPEN, "gripper")
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = True
def run_calibration(self):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
calibration = {}
for name in self.follower_arms:
homing_offset, drive_mode = run_arm_calibration(self.follower_arms[name], f"{name} follower")
calibration[f"follower_{name}"] = {}
for idx, motor_name in enumerate(self.follower_arms[name].motor_names):
calibration[f"follower_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
for name in self.leader_arms:
homing_offset, drive_mode = run_arm_calibration(self.leader_arms[name], f"{name} leader")
calibration[f"leader_{name}"] = {}
for idx, motor_name in enumerate(self.leader_arms[name].motor_names):
calibration[f"leader_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
return calibration
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
# Prepare to assign the positions of the leader to the follower
leader_pos = {}
for name in self.leader_arms:
now = time.perf_counter()
leader_pos[name] = self.leader_arms[name].read("Present_Position")
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - now
follower_goal_pos = {}
for name in self.leader_arms:
follower_goal_pos[name] = leader_pos[name]
# Send action
for name in self.follower_arms:
now = time.perf_counter()
self.follower_arms[name].write("Goal_Position", follower_goal_pos[name])
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - now
# Early exit when recording data is not requested
if not record_data:
return
# Read follower position
follower_pos = {}
for name in self.follower_arms:
now = time.perf_counter()
follower_pos[name] = self.follower_arms[name].read("Present_Position")
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - now
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = np.concatenate(state)
# Create action by concatenating follower goal position
action = []
for name in self.follower_arms:
if name in follower_goal_pos:
action.append(follower_goal_pos[name])
action = np.concatenate(action)
# Capture images from cameras
images = {}
for name in self.cameras:
now = time.perf_counter()
images[name] = self.cameras[name].async_read()
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - now
# Populate output dictionnaries and format to pytorch
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = torch.from_numpy(state)
action_dict["action"] = torch.from_numpy(action)
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
return obs_dict, action_dict
def capture_observation(self):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
# Read follower position
follower_pos = {}
for name in self.follower_arms:
follower_pos[name] = self.follower_arms[name].read("Present_Position")
# Create state by concatenating follower current position
state = []
for name in self.follower_arms:
if name in follower_pos:
state.append(follower_pos[name])
state = np.concatenate(state)
# Capture images from cameras
images = {}
for name in self.cameras:
images[name] = self.cameras[name].async_read()
# Populate output dictionnaries and format to pytorch
obs_dict = {}
obs_dict["observation.state"] = torch.from_numpy(state)
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
return obs_dict
def send_action(self, action):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
from_idx = 0
to_idx = 0
follower_goal_pos = {}
for name in self.follower_arms:
if name in self.follower_arms:
to_idx += len(self.follower_arms[name].motor_names)
follower_goal_pos[name] = action[from_idx:to_idx].numpy()
from_idx = to_idx
for name in self.follower_arms:
self.follower_arms[name].write("Goal_Position", follower_goal_pos[name].astype(np.int32))