275 lines
9.0 KiB
Python
275 lines
9.0 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
|
|
|
|
Note: The last frame of the episode doesnt always correspond to a final state.
|
|
That's because our datasets are composed of transition from state to state up to
|
|
the antepenultimate state associated to the ultimate action to arrive in the final state.
|
|
However, there might not be a transition from a final state to another state.
|
|
|
|
Note: This script aims to visualize the data used to train the neural networks.
|
|
~What you see is what you get~. When visualizing image modality, it is often expected to observe
|
|
lossly compression artifacts since these images have been decoded from compressed mp4 videos to
|
|
save disk space. The compression factor applied has been tuned to not affect success rate.
|
|
|
|
Examples:
|
|
|
|
- Visualize data stored on a local machine:
|
|
```
|
|
local$ python lerobot/scripts/visualize_dataset.py \
|
|
--repo-id lerobot/pusht \
|
|
--episode-index 0
|
|
```
|
|
|
|
- Visualize data stored on a distant machine with a local viewer:
|
|
```
|
|
distant$ python lerobot/scripts/visualize_dataset.py \
|
|
--repo-id lerobot/pusht \
|
|
--episode-index 0 \
|
|
--save 1 \
|
|
--output-dir path/to/directory
|
|
|
|
local$ scp distant:path/to/directory/lerobot_pusht_episode_0.rrd .
|
|
local$ rerun lerobot_pusht_episode_0.rrd
|
|
```
|
|
|
|
- Visualize data stored on a distant machine through streaming:
|
|
(You need to forward the websocket port to the distant machine, with
|
|
`ssh -L 9087:localhost:9087 username@remote-host`)
|
|
```
|
|
distant$ python lerobot/scripts/visualize_dataset.py \
|
|
--repo-id lerobot/pusht \
|
|
--episode-index 0 \
|
|
--mode distant \
|
|
--ws-port 9087
|
|
|
|
local$ rerun ws://localhost:9087
|
|
```
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import gc
|
|
import logging
|
|
import time
|
|
from pathlib import Path
|
|
from typing import Iterator
|
|
|
|
import numpy as np
|
|
import rerun as rr
|
|
import torch
|
|
import torch.utils.data
|
|
import tqdm
|
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
|
|
|
|
|
class EpisodeSampler(torch.utils.data.Sampler):
|
|
def __init__(self, dataset: LeRobotDataset, episode_index: int):
|
|
from_idx = dataset.episode_data_index["from"][episode_index].item()
|
|
to_idx = dataset.episode_data_index["to"][episode_index].item()
|
|
self.frame_ids = range(from_idx, to_idx)
|
|
|
|
def __iter__(self) -> Iterator:
|
|
return iter(self.frame_ids)
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.frame_ids)
|
|
|
|
|
|
def to_hwc_uint8_numpy(chw_float32_torch: torch.Tensor) -> np.ndarray:
|
|
assert chw_float32_torch.dtype == torch.float32
|
|
assert chw_float32_torch.ndim == 3
|
|
c, h, w = chw_float32_torch.shape
|
|
assert c < h and c < w, f"expect channel first images, but instead {chw_float32_torch.shape}"
|
|
hwc_uint8_numpy = (chw_float32_torch * 255).type(torch.uint8).permute(1, 2, 0).numpy()
|
|
return hwc_uint8_numpy
|
|
|
|
|
|
def visualize_dataset(
|
|
repo_id: str,
|
|
episode_index: int,
|
|
batch_size: int = 32,
|
|
num_workers: int = 0,
|
|
mode: str = "local",
|
|
web_port: int = 9090,
|
|
ws_port: int = 9087,
|
|
save: bool = False,
|
|
output_dir: Path | None = None,
|
|
root: Path | None = None,
|
|
) -> Path | None:
|
|
if save:
|
|
assert (
|
|
output_dir is not None
|
|
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
|
|
|
|
logging.info("Loading dataset")
|
|
dataset = LeRobotDataset(repo_id, root=root)
|
|
|
|
logging.info("Loading dataloader")
|
|
episode_sampler = EpisodeSampler(dataset, episode_index)
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
num_workers=num_workers,
|
|
batch_size=batch_size,
|
|
sampler=episode_sampler,
|
|
)
|
|
|
|
logging.info("Starting Rerun")
|
|
|
|
if mode not in ["local", "distant"]:
|
|
raise ValueError(mode)
|
|
|
|
spawn_local_viewer = mode == "local" and not save
|
|
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer)
|
|
|
|
# Manually call python garbage collector after `rr.init` to avoid hanging in a blocking flush
|
|
# when iterating on a dataloader with `num_workers` > 0
|
|
# TODO(rcadene): remove `gc.collect` when rerun version 0.16 is out, which includes a fix
|
|
gc.collect()
|
|
|
|
if mode == "distant":
|
|
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port)
|
|
|
|
logging.info("Logging to Rerun")
|
|
|
|
for batch in tqdm.tqdm(dataloader, total=len(dataloader)):
|
|
# iterate over the batch
|
|
for i in range(len(batch["index"])):
|
|
rr.set_time_sequence("frame_index", batch["frame_index"][i].item())
|
|
rr.set_time_seconds("timestamp", batch["timestamp"][i].item())
|
|
|
|
# display each camera image
|
|
for key in dataset.camera_keys:
|
|
# TODO(rcadene): add `.compress()`? is it lossless?
|
|
rr.log(key, rr.Image(to_hwc_uint8_numpy(batch[key][i])))
|
|
|
|
# display each dimension of action space (e.g. actuators command)
|
|
if "action" in batch:
|
|
for dim_idx, val in enumerate(batch["action"][i]):
|
|
rr.log(f"action/{dim_idx}", rr.Scalar(val.item()))
|
|
|
|
# display each dimension of observed state space (e.g. agent position in joint space)
|
|
if "observation.state" in batch:
|
|
for dim_idx, val in enumerate(batch["observation.state"][i]):
|
|
rr.log(f"state/{dim_idx}", rr.Scalar(val.item()))
|
|
|
|
if "next.done" in batch:
|
|
rr.log("next.done", rr.Scalar(batch["next.done"][i].item()))
|
|
|
|
if "next.reward" in batch:
|
|
rr.log("next.reward", rr.Scalar(batch["next.reward"][i].item()))
|
|
|
|
if "next.success" in batch:
|
|
rr.log("next.success", rr.Scalar(batch["next.success"][i].item()))
|
|
|
|
if mode == "local" and save:
|
|
# save .rrd locally
|
|
output_dir = Path(output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
repo_id_str = repo_id.replace("/", "_")
|
|
rrd_path = output_dir / f"{repo_id_str}_episode_{episode_index}.rrd"
|
|
rr.save(rrd_path)
|
|
return rrd_path
|
|
|
|
elif mode == "distant":
|
|
# stop the process from exiting since it is serving the websocket connection
|
|
try:
|
|
while True:
|
|
time.sleep(1)
|
|
except KeyboardInterrupt:
|
|
print("Ctrl-C received. Exiting.")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--repo-id",
|
|
type=str,
|
|
required=True,
|
|
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht`).",
|
|
)
|
|
parser.add_argument(
|
|
"--episode-index",
|
|
type=int,
|
|
required=True,
|
|
help="Episode to visualize.",
|
|
)
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=32,
|
|
help="Batch size loaded by DataLoader.",
|
|
)
|
|
parser.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=4,
|
|
help="Number of processes of Dataloader for loading the data.",
|
|
)
|
|
parser.add_argument(
|
|
"--mode",
|
|
type=str,
|
|
default="local",
|
|
help=(
|
|
"Mode of viewing between 'local' or 'distant'. "
|
|
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. "
|
|
"'distant' creates a server on the distant machine where the data is stored. "
|
|
"Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--web-port",
|
|
type=int,
|
|
default=9090,
|
|
help="Web port for rerun.io when `--mode distant` is set.",
|
|
)
|
|
parser.add_argument(
|
|
"--ws-port",
|
|
type=int,
|
|
default=9087,
|
|
help="Web socket port for rerun.io when `--mode distant` is set.",
|
|
)
|
|
parser.add_argument(
|
|
"--save",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Save a .rrd file in the directory provided by `--output-dir`. "
|
|
"It also deactivates the spawning of a viewer. "
|
|
"Visualize the data by running `rerun path/to/file.rrd` on your local machine."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=str,
|
|
help="Directory path to write a .rrd file when `--save 1` is set.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--root",
|
|
type=str,
|
|
help="Root directory for a dataset stored on a local machine.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
visualize_dataset(**vars(args))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|