- Increased frame rate in `maniskill_example.yaml` from 20 to 400 for enhanced simulation speed. - Updated `sac_maniskill.yaml` to set `dataset_repo_id` to null and adjusted `grad_clip_norm` from 10.0 to 40.0. - Changed `storage_device` from "cpu" to "cuda" for better resource utilization. - Modified `save_freq` from 2000000 to 1000000 to optimize saving intervals. - Enhanced input normalization parameters for `observation.state` and `observation.image` in SAC policy. - Adjusted `num_critics` from 10 to 2 and `policy_parameters_push_frequency` from 1 to 4 for improved training dynamics. - Updated `learner_server.py` to utilize `offline_buffer_capacity` for replay buffer initialization. - Changed action multiplier in `maniskill_manipulator.py` from 1 to 0.03 for finer control over actions. |
||
---|---|---|
.. | ||
act.yaml | ||
act_aloha_real.yaml | ||
act_koch_real.yaml | ||
act_moss_real.yaml | ||
act_so100_real.yaml | ||
diffusion.yaml | ||
diffusion_pusht_keypoints.yaml | ||
hilserl_classifier.yaml | ||
sac_maniskill.yaml | ||
sac_pusht_keypoints.yaml | ||
sac_real.yaml | ||
tdmpc.yaml | ||
tdmpc_pusht_keypoints.yaml | ||
vqbet.yaml |