lerobot/tests/test_envs.py

113 lines
3.0 KiB
Python

import pytest
from tensordict import TensorDict
import torch
from torchrl.envs.utils import check_env_specs, step_mdp
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.pusht.env import PushtEnv
from lerobot.common.envs.simxarm.env import SimxarmEnv
from lerobot.common.utils import init_hydra_config
from .utils import DEVICE, DEFAULT_CONFIG_PATH
def print_spec_rollout(env):
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
print("done_spec:", env.done_spec)
td = env.reset()
print("reset tensordict", td)
td = env.rand_step(td)
print("random step tensordict", td)
def simple_rollout(steps=100):
# preallocate:
data = TensorDict({}, [steps])
# reset
_data = env.reset()
for i in range(steps):
_data["action"] = env.action_spec.rand()
_data = env.step(_data)
data[i] = _data
_data = step_mdp(_data, keep_other=True)
return data
print("data from rollout:", simple_rollout(100))
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
[
("lift", False, False),
("lift", True, False),
("lift", True, True),
# TODO(aliberts): Add simxarm other tasks
# ("reach", False, False),
# ("reach", True, False),
# ("push", False, False),
# ("push", True, False),
# ("peg_in_box", False, False),
# ("peg_in_box", True, False),
],
)
def test_simxarm(task, from_pixels, pixels_only):
env = SimxarmEnv(
task,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=84 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
(True, False),
],
)
def test_pusht(from_pixels, pixels_only):
env = PushtEnv(
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=96 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
@pytest.mark.parametrize(
"env_name",
[
"simxarm",
"pusht",
"aloha",
],
)
def test_factory(env_name):
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[f"env={env_name}", f"device={DEVICE}"],
)
offline_buffer = make_offline_buffer(cfg)
env = make_env(cfg)
for key in offline_buffer.image_keys:
assert env.reset().get(key).dtype == torch.uint8
check_env_specs(env)
env = make_env(cfg, transform=offline_buffer.transform)
for key in offline_buffer.image_keys:
img = env.reset().get(key)
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
check_env_specs(env)