lerobot/lerobot/scripts/visualize_image_transforms.py

48 lines
1.4 KiB
Python

from pathlib import Path
import hydra
from torchvision.transforms import ToPILImage
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.transforms import make_transforms
to_pil = ToPILImage()
def main(cfg, output_dir=Path("outputs/image_transforms")):
dataset = LeRobotDataset(cfg.dataset_repo_id, transform=None)
output_dir = Path(output_dir) / Path(cfg.dataset_repo_id.split("/")[-1])
output_dir.mkdir(parents=True, exist_ok=True)
# Get first frame of 1st episode
first_idx = dataset.episode_data_index["from"][0].item()
frame = dataset[first_idx][dataset.camera_keys[0]]
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
transforms = ["brightness", "contrast", "saturation", "hue", "sharpness"]
# Apply each single transformation
for transform_name in transforms:
for t in transforms:
if t == transform_name:
cfg.image_transform[t].weight = 1
else:
cfg.image_transform[t].weight = 0
transform = make_transforms(cfg.image_transform)
img = transform(frame)
to_pil(img).save(output_dir / f"{transform_name}.png", quality=100)
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
def visualize_transforms_cli(cfg: dict):
main(
cfg,
)
if __name__ == "__main__":
visualize_transforms_cli()