lerobot/lerobot/common/policies/vqbet/modeling_vqbet.py

912 lines
44 KiB
Python

#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections import deque
from typing import Callable, List
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from torch import Tensor, nn
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
# ruff: noqa: N806
class VQBeTPolicy(PreTrainedPolicy):
"""
VQ-BeT Policy as per "Behavior Generation with Latent Actions"
"""
config_class = VQBeTConfig
name = "vqbet"
def __init__(
self,
config: VQBeTConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.vqbet = VQBeTModel(config)
self.reset()
def get_optim_params(self) -> dict:
vqvae_params = (
list(self.vqbet.action_head.vqvae_model.encoder.parameters())
+ list(self.vqbet.action_head.vqvae_model.decoder.parameters())
+ list(self.vqbet.action_head.vqvae_model.vq_layer.parameters())
)
decay_params, no_decay_params = self.vqbet.policy.configure_parameters()
decay_params = (
decay_params
+ list(self.vqbet.rgb_encoder.parameters())
+ list(self.vqbet.state_projector.parameters())
+ list(self.vqbet.rgb_feature_projector.parameters())
+ [self.vqbet.action_token]
+ list(self.vqbet.action_head.map_to_cbet_preds_offset.parameters())
)
if self.config.sequentially_select:
decay_params = (
decay_params
+ list(self.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters())
+ list(self.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters())
)
else:
decay_params = decay_params + list(self.vqbet.action_head.map_to_cbet_preds_bin.parameters())
return [
{
"params": decay_params,
},
{
"params": vqvae_params,
"weight_decay": self.config.optimizer_vqvae_weight_decay,
"lr": self.config.optimizer_vqvae_lr,
},
{
"params": no_decay_params,
"weight_decay": 0.0,
},
]
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
queues are populated during rollout of the policy, they contain the n latest observations and actions
"""
self._queues = {
"observation.images": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.action_chunk_size),
}
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if not self.vqbet.action_head.vqvae_model.discretized.item():
warnings.warn(
"To evaluate in the environment, your VQ-BeT model should contain a pretrained Residual VQ.",
stacklevel=1,
)
if len(self._queues["action"]) == 0:
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
# the dimension of returned action is (batch_size, action_chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
# since the data in the action queue's dimension is (action_chunk_size, batch_size, action_dim), we transpose the action and fill the queue
self._queues["action"].extend(actions.transpose(0, 1))
action = self._queues["action"].popleft()
return action
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
batch = self.normalize_targets(batch)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
if not self.vqbet.action_head.vqvae_model.discretized.item():
# loss: total loss of training RVQ
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
# n_different_combinations: how many different code combinations are being used out of all possible combinations in single batch. This can be at most `vqvae_n_embed ^ number of layers of RVQ (=2)` (hint consider the RVQ as a decision tree).
loss, n_different_codes, n_different_combinations, recon_l1_error = (
self.vqbet.action_head.discretize(self.config.n_vqvae_training_steps, batch["action"])
)
return {
"loss": loss,
"n_different_codes": n_different_codes,
"n_different_combinations": n_different_combinations,
"recon_l1_error": recon_l1_error,
}
# if Residual VQ is already trained, VQ-BeT trains its GPT and bin prediction head / offset prediction head parts.
_, loss_dict = self.vqbet(batch, rollout=False)
return loss_dict
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class VQBeTModel(nn.Module):
"""VQ-BeT: The underlying neural network for VQ-BeT
Note: In this code we use the terms `rgb_encoder`, 'policy', `action_head`. The meanings are as follows.
- The `rgb_encoder` process rgb-style image observations to one-dimensional embedding vectors
- A `policy` is a minGPT architecture, that takes observation sequences and action query tokens to generate `features`.
- These `features` pass through the action head, which passes through the code prediction, offset prediction head,
and finally generates a prediction for the action chunks.
-------------------------------** legend **-------------------------------
│ n = n_obs_steps, p = n_action_pred_token, c = action_chunk_size) │
│ o_{t} : visual observation at timestep {t}
│ s_{t} : state observation at timestep {t}
│ a_{t} : action at timestep {t}
│ A_Q : action_query_token │
--------------------------------------------------------------------------
Training Phase 1. Discretize action using Residual VQ (for config.n_vqvae_training_steps steps)
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ RVQ encoder │ ─► │ Residual │ ─► │ RVQ Decoder │
│ (a_{t}~a_{t+p}) │ │ Code Quantizer │ │ │
│ │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Training Phase 2.
timestep {t-n+1} timestep {t-n+2} timestep {t}
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
o_{t-n+1} o_{t-n+2} ... o_{t}
│ │ │
│ s_{t-n+1} │ s_{t-n+2} ... │ s_{t} p
│ │ │ │ │ │ ┌───────┴───────┐
│ │ A_Q │ │ A_Q ... │ │ A_Q ... A_Q
│ │ │ │ │ │ │ │ │ │
┌───▼─────▼─────▼─────▼─────▼─────▼─────────────────▼─────▼─────▼───────────────▼───┐
│ │
│ GPT │ => policy
│ │
└───────────────▼─────────────────▼─────────────────────────────▼───────────────▼───┘
│ │ │ │
┌───┴───┐ ┌───┴───┐ ┌───┴───┐ ┌───┴───┐
code offset code offset code offset code offset
▼ │ ▼ │ ▼ │ ▼ │ => action_head
RVQ Decoder │ RVQ Decoder │ RVQ Decoder │ RVQ Decoder │
└── + ──┘ └── + ──┘ └── + ──┘ └── + ──┘
▼ ▼ ▼ ▼
action chunk action chunk action chunk action chunk
a_{t-n+1} ~ a_{t-n+2} ~ a_{t} ~ ... a_{t+p-1} ~
a_{t-n+c} a_{t-n+c+1} a_{t+c-1} a_{t+p+c-1}
ONLY this chunk is used in rollout!
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
self.config = config
self.rgb_encoder = VQBeTRgbEncoder(config)
self.num_images = len(self.config.image_features)
# This action query token is used as a prompt for querying action chunks. Please refer to "A_Q" in the image above.
# Note: During the forward pass, this token is repeated as many times as needed. The authors also experimented with initializing the necessary number of tokens independently and observed inferior results.
self.action_token = nn.Parameter(torch.randn(1, 1, self.config.gpt_input_dim))
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
self.state_projector = MLP(
config.robot_state_feature.shape[0], hidden_channels=[self.config.gpt_input_dim]
)
self.rgb_feature_projector = MLP(
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
)
# GPT part of VQ-BeT
self.policy = GPT(config)
# bin prediction head / offset prediction head part of VQ-BeT
self.action_head = VQBeTHead(config)
# Action tokens for: each observation step, the current action token, and all future action tokens.
num_tokens = self.config.n_action_pred_token + self.config.n_obs_steps - 1
self.register_buffer(
"select_target_actions_indices",
torch.row_stack([torch.arange(i, i + self.config.action_chunk_size) for i in range(num_tokens)]),
)
def forward(self, batch: dict[str, Tensor], rollout: bool) -> Tensor:
# Input validation.
assert set(batch).issuperset({"observation.state", "observation.images"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch and sequence dims.
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
)
# Arrange prior and current observation step tokens as shown in the class docstring.
# First project features to token dimension.
rgb_tokens = self.rgb_feature_projector(
img_features
) # (batch, obs_step, number of different cameras, projection dims)
input_tokens = [rgb_tokens[:, :, i] for i in range(rgb_tokens.size(2))]
input_tokens.append(
self.state_projector(batch["observation.state"])
) # (batch, obs_step, projection dims)
input_tokens.append(einops.repeat(self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps))
# Interleave tokens by stacking and rearranging.
input_tokens = torch.stack(input_tokens, dim=2)
input_tokens = einops.rearrange(input_tokens, "b n t d -> b (n t) d")
len_additional_action_token = self.config.n_action_pred_token - 1
future_action_tokens = self.action_token.repeat(batch_size, len_additional_action_token, 1)
# add additional action query tokens for predicting future action chunks
input_tokens = torch.cat([input_tokens, future_action_tokens], dim=1)
# get action features (pass through GPT)
features = self.policy(input_tokens)
# len(self.config.input_features) is the number of different observation modes.
# this line gets the index of action prompt tokens.
historical_act_pred_index = np.arange(0, n_obs_steps) * (len(self.config.input_features) + 1) + len(
self.config.input_features
)
# only extract the output tokens at the position of action query:
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models,
# mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://arxiv.org/pdf/2206.11251).
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
if len_additional_action_token > 0:
features = torch.cat(
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
)
else:
features = features[:, historical_act_pred_index]
# pass through action head
action_head_output = self.action_head(features)
# if rollout, VQ-BeT don't calculate loss
if rollout:
return action_head_output["predicted_action"][:, n_obs_steps - 1, :].reshape(
batch_size, self.config.action_chunk_size, -1
)
# else, it calculate overall loss (bin prediction loss, and offset loss)
else:
output = batch["action"][:, self.select_target_actions_indices]
loss = self.action_head.loss_fn(action_head_output, output, reduction="mean")
return action_head_output, loss
class VQBeTHead(nn.Module):
def __init__(self, config: VQBeTConfig):
"""
VQBeTHead takes output of GPT layers, and pass the feature through bin prediction head (`self.map_to_cbet_preds_bin`), and offset prediction head (`self.map_to_cbet_preds_offset`)
self.map_to_cbet_preds_bin: outputs probability of each code (for each layer).
The input dimension of `self.map_to_cbet_preds_bin` is same with the output of GPT,
and the output dimension of `self.map_to_cbet_preds_bin` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed`.
if the agent select the code sequentially, we use self.map_to_cbet_preds_primary_bin and self.map_to_cbet_preds_secondary_bin instead of self._map_to_cbet_preds_bin.
self.map_to_cbet_preds_offset: output the predicted offsets for all the codes in all the layers.
The input dimension of ` self.map_to_cbet_preds_offset` is same with the output of GPT,
and the output dimension of ` self.map_to_cbet_preds_offset` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed * config.action_chunk_size * config.action_feature.shape[0]`.
"""
super().__init__()
self.config = config
# init vqvae
self.vqvae_model = VqVae(config)
if config.sequentially_select:
self.map_to_cbet_preds_primary_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_secondary_bin = MLP(
in_channels=config.gpt_output_dim + self.config.vqvae_n_embed,
hidden_channels=[self.config.vqvae_n_embed],
)
else:
self.map_to_cbet_preds_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_offset = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[
self.vqvae_model.vqvae_num_layers
* self.config.vqvae_n_embed
* config.action_chunk_size
* config.action_feature.shape[0],
],
)
# loss
self._focal_loss_fn = FocalLoss(gamma=2.0)
def discretize(self, n_vqvae_training_steps, actions):
# Resize the action sequence data to fit the action chunk size using a sliding window approach.
actions = torch.cat(
[
actions[:, j : j + self.config.action_chunk_size, :]
for j in range(actions.shape[1] + 1 - self.config.action_chunk_size)
],
dim=0,
)
# `actions` is a tensor of shape (new_batch, action_chunk_size, action_dim) where new_batch is the number of possible chunks created from the original sequences using the sliding window.
loss, metric = self.vqvae_model.vqvae_forward(actions)
n_different_codes = sum(
[len(torch.unique(metric[2][:, i])) for i in range(self.vqvae_model.vqvae_num_layers)]
)
n_different_combinations = len(torch.unique(metric[2], dim=0))
recon_l1_error = metric[0].detach().cpu().item()
self.vqvae_model.optimized_steps += 1
# if we updated RVQ more than `n_vqvae_training_steps` steps, we freeze the RVQ part.
if self.vqvae_model.optimized_steps >= n_vqvae_training_steps:
self.vqvae_model.discretized = torch.tensor(True)
self.vqvae_model.vq_layer.freeze_codebook = torch.tensor(True)
print("Finished discretizing action data!")
self.vqvae_model.eval()
for param in self.vqvae_model.vq_layer.parameters():
param.requires_grad = False
return loss, n_different_codes, n_different_combinations, recon_l1_error
def forward(self, x, **kwargs):
# N is the batch size, and T is number of action query tokens, which are process through same GPT
N, T, _ = x.shape
# we calculate N and T side parallely. Thus, the dimensions would be
# (batch size * number of action query tokens, action chunk size, action dimension)
x = einops.rearrange(x, "N T WA -> (N T) WA")
# sample offsets
cbet_offsets = self.map_to_cbet_preds_offset(x)
cbet_offsets = einops.rearrange(
cbet_offsets,
"(NT) (G C WA) -> (NT) G C WA",
G=self.vqvae_model.vqvae_num_layers,
C=self.config.vqvae_n_embed,
)
# if self.config.sequentially_select is True, bin prediction head first sample the primary code, and then sample secondary code
if self.config.sequentially_select:
cbet_primary_logits = self.map_to_cbet_preds_primary_bin(x)
# select primary bin first
cbet_primary_probs = torch.softmax(
cbet_primary_logits / self.config.bet_softmax_temperature, dim=-1
)
NT, choices = cbet_primary_probs.shape
sampled_primary_centers = einops.rearrange(
torch.multinomial(cbet_primary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
torch.cat(
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
axis=1,
)
)
cbet_secondary_probs = torch.softmax(
cbet_secondary_logits / self.config.bet_softmax_temperature, dim=-1
)
sampled_secondary_centers = einops.rearrange(
torch.multinomial(cbet_secondary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
sampled_centers = torch.stack((sampled_primary_centers, sampled_secondary_centers), axis=1)
cbet_logits = torch.stack([cbet_primary_logits, cbet_secondary_logits], dim=1)
# if self.config.sequentially_select is False, bin prediction head samples primary and secondary code at once.
else:
cbet_logits = self.map_to_cbet_preds_bin(x)
cbet_logits = einops.rearrange(
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
)
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
NT, G, choices = cbet_probs.shape
sampled_centers = einops.rearrange(
torch.multinomial(cbet_probs.view(-1, choices), num_samples=1),
"(NT G) 1 -> NT G",
NT=NT,
)
device = get_device_from_parameters(self)
indices = (
torch.arange(NT, device=device).unsqueeze(1),
torch.arange(self.vqvae_model.vqvae_num_layers, device=device).unsqueeze(0),
sampled_centers,
)
# Use advanced indexing to sample the values (Extract the only offsets corresponding to the sampled codes.)
sampled_offsets = cbet_offsets[indices]
# Then, sum the offsets over the RVQ layers to get a net offset for the bin prediction
sampled_offsets = sampled_offsets.sum(dim=1)
with torch.no_grad():
# Get the centroids (= vectors corresponding to the codes) of each layer to pass it through RVQ decoder
return_decoder_input = self.vqvae_model.get_embeddings_from_code(sampled_centers).clone().detach()
# pass the centroids through decoder to get actions.
decoded_action = self.vqvae_model.get_action_from_latent(return_decoder_input).clone().detach()
# reshaped extracted offset to match with decoded centroids
sampled_offsets = einops.rearrange(
sampled_offsets, "NT (W A) -> NT W A", W=self.config.action_chunk_size
)
# add offset and decoded centroids
predicted_action = decoded_action + sampled_offsets
predicted_action = einops.rearrange(
predicted_action,
"(N T) W A -> N T (W A)",
N=N,
T=T,
W=self.config.action_chunk_size,
)
return {
"cbet_logits": cbet_logits,
"predicted_action": predicted_action,
"sampled_centers": sampled_centers,
"decoded_action": decoded_action,
}
def loss_fn(self, pred, target, **kwargs):
"""
for given ground truth action values (target), and prediction (pred) this function calculates the overall loss.
predicted_action: predicted action chunk (offset + decoded centroids)
sampled_centers: sampled centroids (code of RVQ)
decoded_action: decoded action, which is produced by passing sampled_centers through RVQ decoder
NT: batch size * T
T: number of action query tokens, which are process through same GPT
cbet_logits: probability of all codes in each layer
"""
action_seq = target
predicted_action = pred["predicted_action"]
sampled_centers = pred["sampled_centers"]
decoded_action = pred["decoded_action"]
NT = predicted_action.shape[0] * predicted_action.shape[1]
cbet_logits = pred["cbet_logits"]
predicted_action = einops.rearrange(
predicted_action, "N T (W A) -> (N T) W A", W=self.config.action_chunk_size
)
action_seq = einops.rearrange(action_seq, "N T W A -> (N T) W A")
# Figure out the loss for the actions.
# First, we need to find the closest cluster center for each ground truth action.
with torch.no_grad():
state_vq, action_bins = self.vqvae_model.get_code(action_seq) # action_bins: NT, G
# Now we can compute the loss.
# offset loss is L1 distance between the predicted action and ground truth action
offset_loss = F.l1_loss(action_seq, predicted_action)
# calculate primary code prediction loss
cbet_loss1 = self._focal_loss_fn(
cbet_logits[:, 0, :],
action_bins[:, 0],
)
# calculate secondary code prediction loss
cbet_loss2 = self._focal_loss_fn(
cbet_logits[:, 1, :],
action_bins[:, 1],
)
# add all the prediction loss
cbet_loss = (
cbet_loss1 * self.config.primary_code_loss_weight
+ cbet_loss2 * self.config.secondary_code_loss_weight
)
equal_primary_code_rate = torch.sum((action_bins[:, 0] == sampled_centers[:, 0]).int()) / (NT)
equal_secondary_code_rate = torch.sum((action_bins[:, 1] == sampled_centers[:, 1]).int()) / (NT)
action_mse_error = torch.mean((action_seq - predicted_action) ** 2)
vq_action_error = torch.mean(torch.abs(action_seq - decoded_action))
offset_action_error = torch.mean(torch.abs(action_seq - predicted_action))
action_error_max = torch.max(torch.abs(action_seq - predicted_action))
loss = cbet_loss + self.config.offset_loss_weight * offset_loss
loss_dict = {
"loss": loss,
"classification_loss": cbet_loss.detach().cpu().item(),
"offset_loss": offset_loss.detach().cpu().item(),
"equal_primary_code_rate": equal_primary_code_rate.detach().cpu().item(),
"equal_secondary_code_rate": equal_secondary_code_rate.detach().cpu().item(),
"vq_action_error": vq_action_error.detach().cpu().item(),
"offset_action_error": offset_action_error.detach().cpu().item(),
"action_error_max": action_error_max.detach().cpu().item(),
"action_mse_error": action_mse_error.detach().cpu().item(),
}
return loss_dict
class VQBeTRgbEncoder(nn.Module):
"""Encode an RGB image into a 1D feature vector.
Includes the ability to normalize and crop the image first.
Same with DiffusionRgbEncoder from modeling_diffusion.py
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
# Set up optional preprocessing.
if config.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
if config.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
else:
self.maybe_random_crop = self.center_crop
else:
self.do_crop = False
# Set up backbone.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
weights=config.pretrained_backbone_weights
)
# Note: This assumes that the layer4 feature map is children()[-3]
# TODO(alexander-soare): Use a safer alternative.
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
if config.use_group_norm:
if config.pretrained_backbone_weights:
raise ValueError(
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
)
self.backbone = _replace_submodules(
root_module=self.backbone,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
)
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.image_features` and it should
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.image_features`.
images_shape = next(iter(config.image_features.values())).shape
dummy_shape_h_w = config.crop_shape if config.crop_shape is not None else images_shape[1:]
dummy_shape = (1, images_shape[0], *dummy_shape_h_w)
feature_map_shape = get_output_shape(self.backbone, dummy_shape)[1:]
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: (B, C, H, W) image tensor with pixel values in [0, 1].
Returns:
(B, D) image feature.
"""
# Preprocess: maybe crop (if it was set up in the __init__).
if self.do_crop:
if self.training: # noqa: SIM108
x = self.maybe_random_crop(x)
else:
# Always use center crop for eval.
x = self.center_crop(x)
# Extract backbone feature.
x = torch.flatten(self.pool(self.backbone(x)), start_dim=1)
# Final linear layer with non-linearity.
x = self.relu(self.out(x))
return x
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:
root_module: The module for which the submodules need to be replaced
predicate: Takes a module as an argument and must return True if the that module is to be replaced.
func: Takes a module as an argument and returns a new module to replace it with.
Returns:
The root module with its submodules replaced.
"""
if predicate(root_module):
return func(root_module)
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
for *parents, k in replace_list:
parent_module = root_module
if len(parents) > 0:
parent_module = root_module.get_submodule(".".join(parents))
if isinstance(parent_module, nn.Sequential):
src_module = parent_module[int(k)]
else:
src_module = getattr(parent_module, k)
tgt_module = func(src_module)
if isinstance(parent_module, nn.Sequential):
parent_module[int(k)] = tgt_module
else:
setattr(parent_module, k, tgt_module)
# verify that all BN are replaced
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
return root_module
class VqVae(nn.Module):
def __init__(
self,
config: VQBeTConfig,
):
"""
VQ-VAE is composed of three parts: encoder, vq_layer, and decoder.
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
The vq_layer uses residual VQs.
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
as well as functions to help BeT training part in training phase 2.
"""
super().__init__()
self.config = config
# 'discretized' indicates whether the Residual VQ part is trained or not. (After finishing the training, we set discretized=True)
self.register_buffer("discretized", torch.tensor(False))
self.optimized_steps = 0
# we use the fixed number of layers for Residual VQ across all environments.
self.vqvae_num_layers = 2
self.vq_layer = ResidualVQ(
dim=config.vqvae_embedding_dim,
num_quantizers=self.vqvae_num_layers,
codebook_size=config.vqvae_n_embed,
)
self.encoder = MLP(
in_channels=self.config.action_feature.shape[0] * self.config.action_chunk_size,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
config.vqvae_embedding_dim,
],
)
self.decoder = MLP(
in_channels=config.vqvae_embedding_dim,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
self.config.action_feature.shape[0] * self.config.action_chunk_size,
],
)
def get_embeddings_from_code(self, encoding_indices):
# This function gets code indices as inputs, and outputs embedding vectors corresponding to the code indices.
with torch.no_grad():
z_embed = self.vq_layer.get_codebook_vector_from_indices(encoding_indices)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
z_embed = z_embed.sum(dim=0)
return z_embed
def get_action_from_latent(self, latent):
# given latent vector, this function outputs the decoded action.
output = self.decoder(latent)
if self.config.action_chunk_size == 1:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.action_feature.shape[0])
else:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.action_feature.shape[0])
def get_code(self, state):
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://arxiv.org/pdf/2403.03181)
state = einops.rearrange(state, "N T A -> N (T A)")
with torch.no_grad():
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
vq_loss_state = torch.sum(vq_loss_state)
return state_vq, vq_code
def vqvae_forward(self, state):
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://arxiv.org/pdf/2403.03181).
state = einops.rearrange(state, "N T A -> N (T A)")
# We start with passing action (or action chunk) at:t+n through the encoder ϕ.
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
# The resulting latent embedding vector x = ϕ(at:t+n) is then mapped to an embedding vector in the codebook of the RVQ layers by the nearest neighbor look-up.
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
vq_loss_state = torch.sum(vq_loss_state)
# Then, the discretized vector zq(x) is reconstructed as ψ(zq(x)) by passing through the decoder ψ.
dec_out = self.decoder(state_vq)
# Calculate L1 reconstruction loss
encoder_loss = (state - dec_out).abs().mean()
# add encoder reconstruction loss and commitment loss
rep_loss = encoder_loss + vq_loss_state * 5
metric = (
encoder_loss.clone().detach(),
vq_loss_state.clone().detach(),
vq_code,
rep_loss.item(),
)
return rep_loss, metric
class FocalLoss(nn.Module):
"""
From https://github.com/notmahi/miniBET/blob/main/behavior_transformer/bet.py
"""
def __init__(self, gamma: float = 0, size_average: bool = True):
super().__init__()
self.gamma = gamma
self.size_average = size_average
def forward(self, input, target):
if len(input.shape) == 3:
N, T, _ = input.shape
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(N, T, 1)).view(N, T)
elif len(input.shape) == 2:
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(-1, 1)).view(-1)
pt = logpt.exp()
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()
class MLP(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
hidden_channels: List[int],
):
layers = []
in_dim = in_channels
for hidden_dim in hidden_channels[:-1]:
layers.append(torch.nn.Linear(in_dim, hidden_dim))
layers.append(torch.nn.ReLU())
in_dim = hidden_dim
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1]))
super().__init__(*layers)