174 lines
5.7 KiB
Python
174 lines
5.7 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import importlib
|
|
from collections import deque
|
|
|
|
import gymnasium as gym
|
|
|
|
from lerobot.common.envs.configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv
|
|
|
|
|
|
def make_env_config(env_type: str, **kwargs) -> EnvConfig:
|
|
if env_type == "aloha":
|
|
return AlohaEnv(**kwargs)
|
|
elif env_type == "pusht":
|
|
return PushtEnv(**kwargs)
|
|
elif env_type == "xarm":
|
|
return XarmEnv(**kwargs)
|
|
else:
|
|
raise ValueError(f"Policy type '{env_type}' is not available.")
|
|
|
|
|
|
def make_env(
|
|
cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False
|
|
) -> gym.vector.VectorEnv | None:
|
|
"""Makes a gym vector environment according to the config.
|
|
|
|
Args:
|
|
cfg (EnvConfig): the config of the environment to instantiate.
|
|
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
|
|
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
|
False.
|
|
|
|
Raises:
|
|
ValueError: if n_envs < 1
|
|
ModuleNotFoundError: If the requested env package is not installed
|
|
|
|
Returns:
|
|
gym.vector.VectorEnv: The parallelized gym.env instance.
|
|
"""
|
|
if n_envs < 1:
|
|
raise ValueError("`n_envs must be at least 1")
|
|
|
|
package_name = f"gym_{cfg.type}"
|
|
|
|
try:
|
|
importlib.import_module(package_name)
|
|
except ModuleNotFoundError as e:
|
|
print(
|
|
f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.type}]'`"
|
|
)
|
|
raise e
|
|
|
|
gym_handle = f"{package_name}/{cfg.task}"
|
|
|
|
# batched version of the env that returns an observation of shape (b, c)
|
|
env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv
|
|
env = env_cls(
|
|
[
|
|
lambda: gym.make(gym_handle, disable_env_checker=True, **cfg.gym_kwargs)
|
|
for _ in range(n_envs)
|
|
]
|
|
)
|
|
|
|
return env
|
|
|
|
|
|
def make_maniskill_env(
|
|
cfg: DictConfig, n_envs: int | None = None
|
|
) -> gym.vector.VectorEnv | None:
|
|
"""Make ManiSkill3 gym environment"""
|
|
from mani_skill.vector.wrappers.gymnasium import ManiSkillVectorEnv
|
|
|
|
env = gym.make(
|
|
cfg.env.task,
|
|
obs_mode=cfg.env.obs,
|
|
control_mode=cfg.env.control_mode,
|
|
render_mode=cfg.env.render_mode,
|
|
sensor_configs=dict(width=cfg.env.image_size, height=cfg.env.image_size),
|
|
num_envs=n_envs,
|
|
)
|
|
# cfg.env_cfg.control_mode = cfg.eval_env_cfg.control_mode = env.control_mode
|
|
env = ManiSkillVectorEnv(env, ignore_terminations=True)
|
|
# state should have the size of 25
|
|
# env = ConvertToLeRobotEnv(env, n_envs)
|
|
# env = PixelWrapper(cfg, env, n_envs)
|
|
env._max_episode_steps = env.max_episode_steps = (
|
|
50 # gym_utils.find_max_episode_steps_value(env)
|
|
)
|
|
env.unwrapped.metadata["render_fps"] = 20
|
|
|
|
return env
|
|
|
|
|
|
class PixelWrapper(gym.Wrapper):
|
|
"""
|
|
Wrapper for pixel observations. Works with Maniskill vectorized environments
|
|
"""
|
|
|
|
def __init__(self, cfg, env, num_envs, num_frames=3):
|
|
super().__init__(env)
|
|
self.cfg = cfg
|
|
self.env = env
|
|
self.observation_space = gym.spaces.Box(
|
|
low=0,
|
|
high=255,
|
|
shape=(num_envs, num_frames * 3, cfg.env.render_size, cfg.env.render_size),
|
|
dtype=np.uint8,
|
|
)
|
|
self._frames = deque([], maxlen=num_frames)
|
|
self._render_size = cfg.env.render_size
|
|
|
|
def _get_obs(self, obs):
|
|
frame = obs["sensor_data"]["base_camera"]["rgb"].cpu().permute(0, 3, 1, 2)
|
|
self._frames.append(frame)
|
|
return {
|
|
"pixels": torch.from_numpy(np.concatenate(self._frames, axis=1)).to(
|
|
self.env.device
|
|
)
|
|
}
|
|
|
|
def reset(self, seed):
|
|
obs, info = self.env.reset() # (seed=seed)
|
|
for _ in range(self._frames.maxlen):
|
|
obs_frames = self._get_obs(obs)
|
|
return obs_frames, info
|
|
|
|
def step(self, action):
|
|
obs, reward, terminated, truncated, info = self.env.step(action)
|
|
return self._get_obs(obs), reward, terminated, truncated, info
|
|
|
|
|
|
# TODO: Remove this
|
|
class ConvertToLeRobotEnv(gym.Wrapper):
|
|
def __init__(self, env, num_envs):
|
|
super().__init__(env)
|
|
|
|
def reset(self, seed=None, options=None):
|
|
obs, info = self.env.reset(seed=seed, options={})
|
|
return self._get_obs(obs), info
|
|
|
|
def step(self, action):
|
|
obs, reward, terminated, truncated, info = self.env.step(action)
|
|
return self._get_obs(obs), reward, terminated, truncated, info
|
|
|
|
def _get_obs(self, observation):
|
|
sensor_data = observation.pop("sensor_data")
|
|
del observation["sensor_param"]
|
|
images = []
|
|
for cam_data in sensor_data.values():
|
|
images.append(cam_data["rgb"])
|
|
|
|
images = torch.concat(images, axis=-1)
|
|
# flatten the rest of the data which should just be state data
|
|
observation = common.flatten_state_dict(
|
|
observation, use_torch=True, device=self.base_env.device
|
|
)
|
|
ret = dict()
|
|
ret["state"] = observation
|
|
ret["pixels"] = images
|
|
return ret
|