lerobot/lerobot/common/teleoperators/koch/koch_leader.py

169 lines
6.7 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DriveMode,
DynamixelMotorsBus,
OperatingMode,
)
from ..teleoperator import Teleoperator
from .config_koch_leader import KochLeaderConfig
logger = logging.getLogger(__name__)
class KochLeader(Teleoperator):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochLeaderConfig
name = "koch_leader"
def __init__(self, config: KochLeaderConfig):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "xl330-m077", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "xl330-m077", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "xl330-m077", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "xl330-m077", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "xl330-m077", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "xl330-m077", MotorNormMode.RANGE_0_100),
},
calibration=self.calibration,
)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.arm.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
self.arm.write("Drive_Mode", "elbow_flex", DriveMode.INVERTED.value)
drive_modes = {name: 1 if name == "elbow_flex" else 0 for name in self.arm.names}
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=drive_modes[name],
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
for name in self.arm.names:
if name != "gripper":
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while
# assembling the arm, you could end up with a servo with a position 0 or 4095 at a crucial
# point
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# its goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
# Set gripper's goal pos in current position mode so that we can use it as a trigger.
self.arm.enable_torque("gripper")
self.arm.write("Goal_Position", "gripper", self.config.gripper_open_pos)
def get_action(self) -> dict[str, float]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
start = time.perf_counter()
action = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read action: {dt_ms:.1f}ms")
return action
def send_feedback(self, feedback: dict[str, float]) -> None:
# TODO(rcadene, aliberts): Implement force feedback
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect()
logger.info(f"{self} disconnected.")