lerobot/lerobot/common/policies/policy_protocol.py

60 lines
1.9 KiB
Python

"""A protocol that all policies should follow.
This provides a mechanism for type-hinting and isinstance checks without requiring the policies classes
subclass a base class.
The protocol structure, method signatures, and docstrings should be used by developers as a reference for
how to implement new policies.
"""
from typing import Protocol, runtime_checkable
from torch import Tensor
@runtime_checkable
class Policy(Protocol):
"""The required interface for implementing a policy.
We also expect all policies to subclass torch.nn.Module and PyTorchModelHubMixin.
"""
name: str
def __init__(self, cfg, dataset_stats: dict[str, dict[str, Tensor]] | None = None):
"""
Args:
cfg: Policy configuration class instance or None, in which case the default instantiation of the
configuration class is used.
dataset_stats: Dataset statistics to be used for normalization.
"""
def reset(self):
"""To be called whenever the environment is reset.
Does things like clearing caches.
"""
def forward(self, batch: dict[str, Tensor]) -> dict:
"""Run the batch through the model and compute the loss for training or validation.
Returns a dictionary with "loss" and maybe other information.
"""
def select_action(self, batch: dict[str, Tensor]):
"""Return one action to run in the environment (potentially in batch mode).
When the model uses a history of observations, or outputs a sequence of actions, this method deals
with caching.
"""
@runtime_checkable
class PolicyWithUpdate(Policy, Protocol):
def update(self):
"""An update method that is to be called after a training optimization step.
Implements an additional updates the model parameters may need (for example, doing an EMA step for a
target model, or incrementing an internal buffer).
"""