466 lines
18 KiB
Python
466 lines
18 KiB
Python
"""Evaluate a policy on an environment by running rollouts and computing metrics.
|
|
|
|
Usage examples:
|
|
|
|
You want to evaluate a model from the hub (eg: https://huggingface.co/lerobot/diffusion_policy_pusht_image)
|
|
for 10 episodes.
|
|
|
|
```
|
|
python lerobot/scripts/eval.py -p lerobot/diffusion_policy_pusht_image eval.n_episodes=10
|
|
```
|
|
|
|
OR, you want to evaluate a model checkpoint from the LeRobot training script for 10 episodes.
|
|
|
|
```
|
|
python lerobot/scripts/eval.py \
|
|
-p outputs/train/diffusion_policy_pusht_image/checkpoints/005000 \
|
|
eval.n_episodes=10
|
|
```
|
|
|
|
Note that in both examples, the repo/folder should contain at least `config.json`, `config.yaml` and
|
|
`model.safetensors`.
|
|
|
|
Note the formatting for providing the number of episodes. Generally, you may provide any number of arguments
|
|
with `qualified.parameter.name=value`. In this case, the parameter eval.n_episodes appears as `n_episodes`
|
|
nested under `eval` in the `config.yaml` found at
|
|
https://huggingface.co/lerobot/diffusion_policy_pusht_image/tree/main.
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
import threading
|
|
import time
|
|
from copy import deepcopy
|
|
from datetime import datetime as dt
|
|
from pathlib import Path
|
|
|
|
import einops
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from datasets import Dataset, Features, Image, Sequence, Value
|
|
from huggingface_hub import snapshot_download
|
|
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
|
from huggingface_hub.utils._validators import HFValidationError
|
|
from PIL import Image as PILImage
|
|
from tqdm import trange
|
|
|
|
from lerobot.common.datasets.factory import make_dataset
|
|
from lerobot.common.datasets.utils import hf_transform_to_torch
|
|
from lerobot.common.envs.factory import make_env
|
|
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
|
from lerobot.common.logger import log_output_dir
|
|
from lerobot.common.policies.factory import make_policy
|
|
from lerobot.common.utils.io_utils import write_video
|
|
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
|
|
|
|
|
def eval_policy(
|
|
env: gym.vector.VectorEnv,
|
|
policy: torch.nn.Module,
|
|
max_episodes_rendered: int = 0,
|
|
video_dir: Path = None,
|
|
return_episode_data: bool = False,
|
|
seed=None,
|
|
):
|
|
"""
|
|
set `return_episode_data` to return a Hugging Face dataset object in an "episodes" key of the return dict.
|
|
"""
|
|
policy.eval()
|
|
|
|
fps = env.unwrapped.metadata["render_fps"]
|
|
|
|
device = "cpu" if policy is None else next(policy.parameters()).device
|
|
|
|
start = time.time()
|
|
sum_rewards = []
|
|
max_rewards = []
|
|
all_successes = []
|
|
seeds = []
|
|
threads = [] # for video saving threads
|
|
episode_counter = 0 # for saving the correct number of videos
|
|
|
|
num_episodes = len(env.envs)
|
|
|
|
# TODO(alexander-soare): if num_episodes is not evenly divisible by the batch size, this will do more work than
|
|
# needed as I'm currently taking a ceil.
|
|
ep_frames = []
|
|
|
|
def render_frame(env):
|
|
# noqa: B023
|
|
eps_rendered = min(max_episodes_rendered, len(env.envs))
|
|
visu = np.stack([env.envs[i].render() for i in range(eps_rendered)])
|
|
ep_frames.append(visu) # noqa: B023
|
|
|
|
for _ in range(num_episodes):
|
|
seeds.append("TODO")
|
|
|
|
if hasattr(policy, "reset"):
|
|
policy.reset()
|
|
else:
|
|
logging.warning(
|
|
f"Policy {policy} doesnt have a `reset` method. It is required if the policy relies on an internal state during rollout."
|
|
)
|
|
|
|
# reset the environment
|
|
observation, info = env.reset(seed=seed)
|
|
if max_episodes_rendered > 0:
|
|
render_frame(env)
|
|
|
|
observations = []
|
|
actions = []
|
|
# episode
|
|
# frame_id
|
|
# timestamp
|
|
rewards = []
|
|
successes = []
|
|
dones = []
|
|
|
|
done = torch.tensor([False for _ in env.envs])
|
|
step = 0
|
|
max_steps = env.envs[0]._max_episode_steps
|
|
progbar = trange(max_steps, desc=f"Running eval with {max_steps} steps (maximum) per rollout.")
|
|
while not done.all():
|
|
# format from env keys to lerobot keys
|
|
observation = preprocess_observation(observation)
|
|
if return_episode_data:
|
|
observations.append(deepcopy(observation))
|
|
|
|
# send observation to device/gpu
|
|
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
|
|
|
|
# get the next action for the environment
|
|
with torch.inference_mode():
|
|
action = policy.select_action(observation)
|
|
|
|
# convert to cpu numpy
|
|
action = postprocess_action(action)
|
|
|
|
# apply the next action
|
|
observation, reward, terminated, truncated, info = env.step(action)
|
|
if max_episodes_rendered > 0:
|
|
render_frame(env)
|
|
|
|
# TODO(rcadene): implement a wrapper over env to return torch tensors in float32 (and cuda?)
|
|
action = torch.from_numpy(action)
|
|
reward = torch.from_numpy(reward)
|
|
terminated = torch.from_numpy(terminated)
|
|
truncated = torch.from_numpy(truncated)
|
|
# environment is considered done (no more steps), when success state is reached (terminated is True),
|
|
# or time limit is reached (truncated is True), or it was previsouly done.
|
|
done = terminated | truncated | done
|
|
|
|
if "final_info" in info:
|
|
# VectorEnv stores is_success into `info["final_info"][env_id]["is_success"]` instead of `info["is_success"]`
|
|
success = [
|
|
env_info["is_success"] if env_info is not None else False for env_info in info["final_info"]
|
|
]
|
|
else:
|
|
success = [False for _ in env.envs]
|
|
success = torch.tensor(success)
|
|
|
|
actions.append(action)
|
|
rewards.append(reward)
|
|
dones.append(done)
|
|
successes.append(success)
|
|
|
|
step += 1
|
|
progbar.update()
|
|
|
|
env.close()
|
|
|
|
# add the last observation when the env is done
|
|
if return_episode_data:
|
|
observation = preprocess_observation(observation)
|
|
observations.append(deepcopy(observation))
|
|
|
|
if return_episode_data:
|
|
new_obses = {}
|
|
for key in observations[0].keys(): # noqa: SIM118
|
|
new_obses[key] = torch.stack([obs[key] for obs in observations], dim=1)
|
|
observations = new_obses
|
|
actions = torch.stack(actions, dim=1)
|
|
rewards = torch.stack(rewards, dim=1)
|
|
successes = torch.stack(successes, dim=1)
|
|
dones = torch.stack(dones, dim=1)
|
|
|
|
# Figure out where in each rollout sequence the first done condition was encountered (results after
|
|
# this won't be included).
|
|
# Note: this assumes that the shape of the done key is (batch_size, max_steps).
|
|
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
|
|
done_indices = torch.argmax(dones.to(int), axis=1) # (batch_size, rollout_steps)
|
|
expand_done_indices = done_indices[:, None].expand(-1, step)
|
|
expand_step_indices = torch.arange(step)[None, :].expand(num_episodes, -1)
|
|
mask = (expand_step_indices <= expand_done_indices).int() # (batch_size, rollout_steps)
|
|
batch_sum_reward = einops.reduce((rewards * mask), "b n -> b", "sum")
|
|
batch_max_reward = einops.reduce((rewards * mask), "b n -> b", "max")
|
|
batch_success = einops.reduce((successes * mask), "b n -> b", "any")
|
|
sum_rewards.extend(batch_sum_reward.tolist())
|
|
max_rewards.extend(batch_max_reward.tolist())
|
|
all_successes.extend(batch_success.tolist())
|
|
|
|
# similar logic is implemented when datasets are pushed to hub (see: `push_to_hub`)
|
|
ep_dicts = []
|
|
episode_data_index = {"from": [], "to": []}
|
|
num_episodes = dones.shape[0]
|
|
total_frames = 0
|
|
id_from = 0
|
|
for ep_id in range(num_episodes):
|
|
num_frames = done_indices[ep_id].item() + 1
|
|
total_frames += num_frames
|
|
|
|
# TODO(rcadene): We need to add a missing last frame which is the observation
|
|
# of a done state. it is critical to have this frame for tdmpc to predict a "done observation/state"
|
|
if return_episode_data:
|
|
ep_dict = {
|
|
"action": actions[ep_id, :num_frames],
|
|
"episode_index": torch.tensor([ep_id] * num_frames),
|
|
"frame_index": torch.arange(0, num_frames, 1),
|
|
"timestamp": torch.arange(0, num_frames, 1) / fps,
|
|
"next.done": dones[ep_id, :num_frames],
|
|
"next.reward": rewards[ep_id, :num_frames].type(torch.float32),
|
|
}
|
|
for key in observations:
|
|
ep_dict[key] = observations[key][ep_id][:num_frames]
|
|
ep_dicts.append(ep_dict)
|
|
|
|
episode_data_index["from"].append(id_from)
|
|
episode_data_index["to"].append(id_from + num_frames)
|
|
|
|
id_from += num_frames
|
|
|
|
# similar logic is implemented in dataset preprocessing
|
|
if return_episode_data:
|
|
data_dict = {}
|
|
keys = ep_dicts[0].keys()
|
|
for key in keys:
|
|
if "image" not in key:
|
|
data_dict[key] = torch.cat([x[key] for x in ep_dicts])
|
|
else:
|
|
if key not in data_dict:
|
|
data_dict[key] = []
|
|
for ep_dict in ep_dicts:
|
|
for img in ep_dict[key]:
|
|
# sanity check that images are channel first
|
|
c, h, w = img.shape
|
|
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
|
|
|
|
# sanity check that images are float32 in range [0,1]
|
|
assert img.dtype == torch.float32, f"expect torch.float32, but instead {img.dtype=}"
|
|
assert img.max() <= 1, f"expect pixels lower than 1, but instead {img.max()=}"
|
|
assert img.min() >= 0, f"expect pixels greater than 1, but instead {img.min()=}"
|
|
|
|
# from float32 in range [0,1] to uint8 in range [0,255]
|
|
img *= 255
|
|
img = img.type(torch.uint8)
|
|
|
|
# convert to channel last and numpy as expected by PIL
|
|
img = PILImage.fromarray(img.permute(1, 2, 0).numpy())
|
|
|
|
data_dict[key].append(img)
|
|
|
|
data_dict["index"] = torch.arange(0, total_frames, 1)
|
|
episode_data_index["from"] = torch.tensor(episode_data_index["from"])
|
|
episode_data_index["to"] = torch.tensor(episode_data_index["to"])
|
|
|
|
# TODO(rcadene): clean this
|
|
features = {}
|
|
for key in observations:
|
|
if "image" in key:
|
|
features[key] = Image()
|
|
else:
|
|
features[key] = Sequence(
|
|
length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None)
|
|
)
|
|
features.update(
|
|
{
|
|
"action": Sequence(
|
|
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
|
),
|
|
"episode_index": Value(dtype="int64", id=None),
|
|
"frame_index": Value(dtype="int64", id=None),
|
|
"timestamp": Value(dtype="float32", id=None),
|
|
"next.reward": Value(dtype="float32", id=None),
|
|
"next.done": Value(dtype="bool", id=None),
|
|
#'next.success': Value(dtype='bool', id=None),
|
|
"index": Value(dtype="int64", id=None),
|
|
}
|
|
)
|
|
features = Features(features)
|
|
hf_dataset = Dataset.from_dict(data_dict, features=features)
|
|
hf_dataset.set_transform(hf_transform_to_torch)
|
|
|
|
if max_episodes_rendered > 0:
|
|
batch_stacked_frames = np.stack(ep_frames, 1) # (b, t, *)
|
|
|
|
for stacked_frames, done_index in zip(
|
|
batch_stacked_frames, done_indices.flatten().tolist(), strict=False
|
|
):
|
|
if episode_counter >= max_episodes_rendered:
|
|
continue
|
|
video_dir.mkdir(parents=True, exist_ok=True)
|
|
video_path = video_dir / f"eval_episode_{episode_counter}.mp4"
|
|
thread = threading.Thread(
|
|
target=write_video,
|
|
args=(str(video_path), stacked_frames[:done_index], fps),
|
|
)
|
|
thread.start()
|
|
threads.append(thread)
|
|
episode_counter += 1
|
|
|
|
videos = einops.rearrange(batch_stacked_frames, "b t h w c -> b t c h w")
|
|
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
info = {
|
|
"per_episode": [
|
|
{
|
|
"episode_ix": i,
|
|
"sum_reward": sum_reward,
|
|
"max_reward": max_reward,
|
|
"success": success,
|
|
"seed": seed,
|
|
}
|
|
for i, (sum_reward, max_reward, success, seed) in enumerate(
|
|
zip(
|
|
sum_rewards[:num_episodes],
|
|
max_rewards[:num_episodes],
|
|
all_successes[:num_episodes],
|
|
seeds[:num_episodes],
|
|
strict=True,
|
|
)
|
|
)
|
|
],
|
|
"aggregated": {
|
|
"avg_sum_reward": float(np.nanmean(sum_rewards[:num_episodes])),
|
|
"avg_max_reward": float(np.nanmean(max_rewards[:num_episodes])),
|
|
"pc_success": float(np.nanmean(all_successes[:num_episodes]) * 100),
|
|
"eval_s": time.time() - start,
|
|
"eval_ep_s": (time.time() - start) / num_episodes,
|
|
},
|
|
}
|
|
if return_episode_data:
|
|
info["episodes"] = {
|
|
"hf_dataset": hf_dataset,
|
|
"episode_data_index": episode_data_index,
|
|
}
|
|
if max_episodes_rendered > 0:
|
|
info["videos"] = videos
|
|
return info
|
|
|
|
|
|
def eval(
|
|
pretrained_policy_path: str | None = None,
|
|
hydra_cfg_path: str | None = None,
|
|
config_overrides: list[str] | None = None,
|
|
):
|
|
assert (pretrained_policy_path is None) ^ (hydra_cfg_path is None)
|
|
if hydra_cfg_path is None:
|
|
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", config_overrides)
|
|
else:
|
|
hydra_cfg = init_hydra_config(hydra_cfg_path, config_overrides)
|
|
out_dir = (
|
|
f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
|
|
)
|
|
|
|
if out_dir is None:
|
|
raise NotImplementedError()
|
|
|
|
# Check device is available
|
|
get_safe_torch_device(hydra_cfg.device, log=True)
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
set_global_seed(hydra_cfg.seed)
|
|
|
|
log_output_dir(out_dir)
|
|
|
|
logging.info("Making environment.")
|
|
env = make_env(hydra_cfg, num_parallel_envs=hydra_cfg.eval.n_episodes)
|
|
|
|
logging.info("Making policy.")
|
|
if hydra_cfg_path is None:
|
|
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
|
|
else:
|
|
# Note: We need the dataset stats to pass to the policy's normalization modules.
|
|
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
|
|
policy.eval()
|
|
|
|
info = eval_policy(
|
|
env,
|
|
policy,
|
|
max_episodes_rendered=10,
|
|
video_dir=Path(out_dir) / "eval",
|
|
return_episode_data=False,
|
|
seed=hydra_cfg.seed,
|
|
)
|
|
print(info["aggregated"])
|
|
|
|
# Save info
|
|
with open(Path(out_dir) / "eval_info.json", "w") as f:
|
|
# remove pytorch tensors which are not serializable to save the evaluation results only
|
|
del info["videos"]
|
|
json.dump(info, f, indent=2)
|
|
|
|
logging.info("End of eval")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
init_logging()
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
|
)
|
|
group = parser.add_mutually_exclusive_group(required=True)
|
|
group.add_argument(
|
|
"-p",
|
|
"--pretrained-policy-name-or-path",
|
|
help=(
|
|
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
|
|
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
|
|
"(useful for debugging). This argument is mutually exclusive with `--config`."
|
|
),
|
|
)
|
|
group.add_argument(
|
|
"--config",
|
|
help=(
|
|
"Path to a yaml config you want to use for initializing a policy from scratch (useful for "
|
|
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
|
|
),
|
|
)
|
|
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
|
|
parser.add_argument(
|
|
"overrides",
|
|
nargs="*",
|
|
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
if args.pretrained_policy_name_or_path is None:
|
|
eval(hydra_cfg_path=args.config, config_overrides=args.overrides)
|
|
else:
|
|
try:
|
|
pretrained_policy_path = Path(
|
|
snapshot_download(args.pretrained_policy_name_or_path, revision=args.revision)
|
|
)
|
|
except HFValidationError:
|
|
logging.warning(
|
|
"The provided pretrained_policy_name_or_path is not a valid Hugging Face Hub repo ID. "
|
|
"Treating it as a local directory."
|
|
)
|
|
except RepositoryNotFoundError:
|
|
logging.warning(
|
|
"The provided pretrained_policy_name_or_path was not found on the Hugging Face Hub. Treating "
|
|
"it as a local directory."
|
|
)
|
|
pretrained_policy_path = Path(args.pretrained_policy_name_or_path)
|
|
if not pretrained_policy_path.is_dir() or not pretrained_policy_path.exists():
|
|
raise ValueError(
|
|
"The provided pretrained_policy_name_or_path is not a valid/existing Hugging Face Hub "
|
|
"repo ID, nor is it an existing local directory."
|
|
)
|
|
|
|
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
|