lerobot/lerobot/common/datasets/factory.py

115 lines
4.2 KiB
Python

import logging
import os
from pathlib import Path
import torch
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
from lerobot.common.envs.transforms import NormalizeTransform
DATA_DIR = Path(os.environ.get("DATA_DIR", "data"))
def make_offline_buffer(
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
):
if cfg.policy.balanced_sampling:
assert cfg.online_steps > 0
batch_size = None
pin_memory = False
prefetch = None
else:
assert cfg.online_steps == 0
num_slices = cfg.policy.batch_size
batch_size = cfg.policy.horizon * num_slices
pin_memory = cfg.device == "cuda"
prefetch = cfg.prefetch
if overwrite_batch_size is not None:
batch_size = overwrite_batch_size
if overwrite_prefetch is not None:
prefetch = overwrite_prefetch
if overwrite_sampler is None:
# TODO(rcadene): move batch_size outside
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
if cfg.offline_prioritized_sampler:
logging.info("use prioritized sampler for offline dataset")
sampler = PrioritizedSliceSampler(
max_capacity=100_000,
alpha=cfg.policy.per_alpha,
beta=cfg.policy.per_beta,
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
logging.info("use simple sampler for offline dataset")
sampler = SliceSampler(
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
sampler = overwrite_sampler
if cfg.env.name == "simxarm":
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
clsfunc = SimxarmExperienceReplay
dataset_id = f"xarm_{cfg.env.task}_medium"
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtExperienceReplay
clsfunc = PushtExperienceReplay
dataset_id = "pusht"
elif cfg.env.name == "aloha":
from lerobot.common.datasets.aloha import AlohaExperienceReplay
clsfunc = AlohaExperienceReplay
dataset_id = f"aloha_{cfg.env.task}"
else:
raise ValueError(cfg.env.name)
offline_buffer = clsfunc(
dataset_id=dataset_id,
root=DATA_DIR,
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
if normalize:
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
stats = offline_buffer.compute_or_load_stats()
in_keys = [("observation", "state"), ("action")]
if cfg.policy == "tdmpc":
for key in offline_buffer.image_keys:
# TODO(rcadene): imagenet normalization is applied inside diffusion policy, but no normalization inside tdmpc
in_keys.append(key)
# since we use next observations in tdmpc
in_keys.append(("next", *key))
in_keys.append(("next", "observation", "state"))
if cfg.policy == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
transform = NormalizeTransform(stats, in_keys, mode="min_max")
offline_buffer.set_transform(transform)
if not overwrite_sampler:
index = torch.arange(0, offline_buffer.num_samples, 1)
sampler.extend(index)
return offline_buffer