2055 lines
94 KiB
Python
2055 lines
94 KiB
Python
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch Qwen2-VL model."""
|
|
|
|
import gc
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch.nn import CrossEntropyLoss, LayerNorm
|
|
from transformers import AutoConfig, AutoModel
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, SlidingWindowCache, StaticCache
|
|
from transformers.generation import GenerationMixin
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
ModelOutput,
|
|
)
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import (
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
|
|
from lerobot.common.policies.dexvla.fusion_modules import *
|
|
|
|
from .configuration_qwen2_vla import Qwen2VLAConfig, Qwen2VLVisionConfig
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_varlen_func
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
|
else:
|
|
flash_attn_varlen_func = None
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "Qwen2VLConfig"
|
|
|
|
|
|
@dataclass
|
|
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
|
"""
|
|
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
|
|
|
Args:
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Language modeling loss (for next-token prediction).
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
The rope index difference between sequence length and multimodal rope.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
rope_deltas: Optional[torch.LongTensor] = None
|
|
|
|
|
|
class Qwen2VLRotaryEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim=None,
|
|
max_position_embeddings=2048,
|
|
base=10000,
|
|
device=None,
|
|
scaling_factor=1.0,
|
|
rope_type="default",
|
|
config: Optional[Qwen2VLAConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.rope_kwargs = {}
|
|
if config is None:
|
|
logger.warning_once(
|
|
"`Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
|
"`config` argument. All other arguments will be removed in v4.46"
|
|
)
|
|
self.rope_kwargs = {
|
|
"rope_type": rope_type,
|
|
"factor": scaling_factor,
|
|
"dim": dim,
|
|
"base": base,
|
|
"max_position_embeddings": max_position_embeddings,
|
|
}
|
|
self.rope_type = rope_type
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
self.original_max_seq_len = max_position_embeddings
|
|
else:
|
|
# BC: "rope_type" was originally "type"
|
|
if config.rope_scaling is not None:
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
|
else:
|
|
self.rope_type = "default"
|
|
self.max_seq_len_cached = config.max_position_embeddings
|
|
self.original_max_seq_len = config.max_position_embeddings
|
|
|
|
self.config = config
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.original_inv_freq = self.inv_freq
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device):
|
|
"""
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
|
1 - growing beyond the cached sequence length (allow scaling)
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
|
"""
|
|
seq_len = torch.max(position_ids) + 1
|
|
if seq_len > self.max_seq_len_cached: # growth
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(
|
|
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
|
)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if (
|
|
seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len
|
|
): # reset
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
|
self.max_seq_len_cached = self.original_max_seq_len
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
if "dynamic" in self.rope_type:
|
|
self._dynamic_frequency_update(position_ids, device=x.device)
|
|
|
|
# Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for spatiotemporal grids
|
|
# So we expand the inv_freq to shape (3, ...)
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
|
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
|
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
|
|
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
|
cos = cos * self.attention_scaling
|
|
sin = sin * self.attention_scaling
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
|
|
|
Explanation:
|
|
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
|
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
|
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
|
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
|
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
|
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
|
difference with modern LLMs.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`):
|
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
|
used to pass offsetted position ids when working with a KV-cache.
|
|
mrope_section(`List(int)`):
|
|
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
mrope_section = mrope_section * 2
|
|
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
|
unsqueeze_dim
|
|
)
|
|
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
|
unsqueeze_dim
|
|
)
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
|
orig_dtype = tensor.dtype
|
|
tensor = tensor.float()
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
|
output = output.to(orig_dtype)
|
|
return output
|
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__()
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor:
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
freqs = torch.outer(seq, self.inv_freq)
|
|
return freqs
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 14,
|
|
temporal_patch_size: int = 2,
|
|
in_channels: int = 3,
|
|
embed_dim: int = 1152,
|
|
) -> None:
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.temporal_patch_size = temporal_patch_size
|
|
self.in_channels = in_channels
|
|
self.embed_dim = embed_dim
|
|
|
|
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
|
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
target_dtype = self.proj.weight.dtype
|
|
hidden_states = hidden_states.view(
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
|
)
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
|
return hidden_states
|
|
|
|
|
|
class PatchMerger(nn.Module):
|
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
|
super().__init__()
|
|
self.hidden_size = context_dim * (spatial_merge_size**2)
|
|
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(self.hidden_size, self.hidden_size),
|
|
nn.GELU(),
|
|
nn.Linear(self.hidden_size, dim),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
|
return x
|
|
|
|
|
|
class VisionMlp(nn.Module):
|
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
self.act = ACT2FN[hidden_act]
|
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
class VisionAttention(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = (
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
attention_mask = torch.full(
|
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
|
)
|
|
for i in range(1, len(cu_seqlens)):
|
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
|
|
|
|
q = q.transpose(0, 1)
|
|
k = k.transpose(0, 1)
|
|
v = v.transpose(0, 1)
|
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
|
attn_weights = attn_weights + attention_mask
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
|
attn_output = torch.matmul(attn_weights, v)
|
|
attn_output = attn_output.transpose(0, 1)
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class VisionFlashAttention2(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = (
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
|
seq_length, -1
|
|
)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class VisionSdpaAttention(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = (
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
|
for i in range(1, len(cu_seqlens)):
|
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
|
q = q.transpose(0, 1)
|
|
k = k.transpose(0, 1)
|
|
v = v.transpose(0, 1)
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
|
attn_output = attn_output.transpose(0, 1)
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
QWEN2_VL_VISION_ATTENTION_CLASSES = {
|
|
"eager": VisionAttention,
|
|
"flash_attention_2": VisionFlashAttention2,
|
|
"sdpa": VisionSdpaAttention,
|
|
}
|
|
|
|
|
|
class Qwen2VLVisionBlock(nn.Module):
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
|
super().__init__()
|
|
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
|
|
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
|
|
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
|
|
|
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
|
config.embed_dim, num_heads=config.num_heads
|
|
)
|
|
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
|
hidden_states = hidden_states + self.attn(
|
|
self.norm1(hidden_states).to(torch.bfloat16), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
|
)
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm
|
|
class Qwen2RMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
Qwen2RMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
def extra_repr(self):
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
|
|
|
|
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
|
|
class Qwen2MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, hidden_state):
|
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
class Qwen2VLAttention(nn.Module):
|
|
"""
|
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
|
and "Generating Long Sequences with Sparse Transformers".
|
|
"""
|
|
|
|
def __init__(self, config: Qwen2VLAConfig, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
|
"when creating this class."
|
|
)
|
|
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.is_causal = True
|
|
self.attention_dropout = config.attention_dropout
|
|
self.rope_scaling = config.rope_scaling
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
|
|
self.rotary_emb = Qwen2VLRotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[
|
|
Tuple[torch.Tensor, torch.Tensor]
|
|
] = None, # will become mandatory in v4.46
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += cache_position[0] + 1
|
|
|
|
if position_embeddings is None:
|
|
logger.warning_once(
|
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
|
"removed and `position_embeddings` will be mandatory."
|
|
)
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
|
)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {
|
|
"sin": sin,
|
|
"cos": cos,
|
|
"cache_position": cache_position,
|
|
} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx, cache_kwargs
|
|
)
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attention_mask is not None: # no matter the length, we just slice it
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
# Fix precision issues in Qwen2-VL float16 inference
|
|
# Replace inf values with zeros in attention weights to prevent NaN propagation
|
|
if query_states.dtype == torch.float16:
|
|
attn_weights = torch.where(
|
|
torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights
|
|
)
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class Qwen2VLFlashAttention2(Qwen2VLAttention):
|
|
"""
|
|
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention`
|
|
as the weights of the module stays untouched. The only required change would be on the forward pass
|
|
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
|
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
|
config.max_window_layers layers.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[
|
|
Tuple[torch.Tensor, torch.Tensor]
|
|
] = None, # will become mandatory in v4.46
|
|
):
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
"with a layer index."
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
|
if position_embeddings is None:
|
|
logger.warning_once(
|
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
|
"removed and `position_embeddings` will be mandatory."
|
|
)
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
|
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
|
)
|
|
|
|
if past_key_value is not None:
|
|
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
|
if (
|
|
getattr(self.config, "sliding_window", None) is not None
|
|
and kv_seq_len > self.config.sliding_window
|
|
and cache_has_contents
|
|
):
|
|
slicing_tokens = 1 - self.config.sliding_window
|
|
|
|
past_key = past_key_value[self.layer_idx][0]
|
|
past_value = past_key_value[self.layer_idx][1]
|
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1:
|
|
raise ValueError(
|
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
|
f" {past_key.shape}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, slicing_tokens:]
|
|
attention_mask = torch.cat(
|
|
[attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1
|
|
)
|
|
|
|
cache_kwargs = {
|
|
"sin": sin,
|
|
"cos": cos,
|
|
"cache_position": cache_position,
|
|
} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx, cache_kwargs
|
|
)
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in float16 just to be sure everything works as expected.
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
# Handle the case where the model is quantized
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
|
|
# Reashape to the expected shape for Flash Attention
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
if (
|
|
self.config.use_sliding_window
|
|
and getattr(self.config, "sliding_window", None) is not None
|
|
and self.layer_idx >= self.config.max_window_layers
|
|
):
|
|
sliding_window = self.config.sliding_window
|
|
else:
|
|
sliding_window = None
|
|
|
|
attn_output = _flash_attention_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
q_len,
|
|
dropout=dropout_rate,
|
|
sliding_window=sliding_window,
|
|
is_causal=self.is_causal,
|
|
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class Qwen2VLSdpaAttention(Qwen2VLAttention):
|
|
"""
|
|
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
|
SDPA API.
|
|
"""
|
|
|
|
# Adapted from Qwen2Attention.forward
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[
|
|
Tuple[torch.Tensor, torch.Tensor]
|
|
] = None, # will become mandatory in v4.46
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if output_attentions:
|
|
logger.warning_once(
|
|
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
return super().forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
if position_embeddings is None:
|
|
logger.warning_once(
|
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
|
"removed and `position_embeddings` will be mandatory."
|
|
)
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
|
)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {
|
|
"sin": sin,
|
|
"cos": cos,
|
|
"cache_position": cache_position,
|
|
} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx, cache_kwargs
|
|
)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
causal_mask = attention_mask
|
|
if attention_mask is not None: # no matter the length, we just slice it
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
|
if query_states.device.type == "cuda" and attention_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
|
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
|
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
|
is_causal = True if causal_mask is None and q_len > 1 else False
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=causal_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
is_causal=is_causal,
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
QWEN2_VL_ATTENTION_CLASSES = {
|
|
"eager": Qwen2VLAttention,
|
|
"flash_attention_2": Qwen2VLFlashAttention2,
|
|
"sdpa": Qwen2VLSdpaAttention,
|
|
}
|
|
|
|
|
|
class Qwen2VLDecoderLayer(nn.Module):
|
|
def __init__(self, config: Qwen2VLAConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
|
logger.warning_once(
|
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
|
"unexpected results may be encountered."
|
|
)
|
|
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
|
|
|
self.mlp = Qwen2MLP(config)
|
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[
|
|
Tuple[torch.Tensor, torch.Tensor]
|
|
] = None, # will become mandatory in v4.46
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
|
`(batch, sequence_length)` where padding elements are indicated by 0.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
|
with `head_dim` being the embedding dimension of each attention head.
|
|
kwargs (`dict`, *optional*):
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
|
into the model
|
|
"""
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
# Self Attention
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
QWEN2VL_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`Qwen2VLConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.",
|
|
QWEN2VL_START_DOCSTRING,
|
|
)
|
|
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
|
config_class = Qwen2VLAConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock", "policy_head"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
_supports_static_cache = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
|
config_class = Qwen2VLVisionConfig
|
|
_no_split_modules = ["Qwen2VLVisionBlock"]
|
|
|
|
def __init__(self, config) -> None:
|
|
super().__init__(config)
|
|
self.spatial_merge_size = config.spatial_merge_size
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=config.patch_size,
|
|
temporal_patch_size=config.temporal_patch_size,
|
|
in_channels=config.in_channels,
|
|
embed_dim=config.embed_dim,
|
|
)
|
|
|
|
head_dim = config.embed_dim // config.num_heads
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
|
|
)
|
|
self.merger = PatchMerger(
|
|
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
|
)
|
|
|
|
def get_dtype(self) -> torch.dtype:
|
|
return self.blocks[0].mlp.fc2.weight.dtype
|
|
|
|
def get_device(self) -> torch.device:
|
|
return self.blocks[0].mlp.fc2.weight.device
|
|
|
|
def rot_pos_emb(self, grid_spatiotemporal):
|
|
pos_ids = []
|
|
for t, h, w in grid_spatiotemporal:
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
hpos_ids = hpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
hpos_ids = hpos_ids.flatten()
|
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
wpos_ids = wpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
wpos_ids = wpos_ids.flatten()
|
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
max_grid_size = grid_spatiotemporal[:, 1:].max()
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
return rotary_pos_emb
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_spatiotemporal: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.patch_embed(hidden_states)
|
|
rotary_pos_emb = self.rot_pos_emb(grid_spatiotemporal)
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_spatiotemporal[:, 1] * grid_spatiotemporal[:, 2], grid_spatiotemporal[:, 0]).cumsum(
|
|
dim=0, dtype=torch.int32
|
|
)
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
|
|
|
for blk in self.blocks:
|
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
|
|
|
return self.merger(hidden_states)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.",
|
|
QWEN2VL_START_DOCSTRING,
|
|
)
|
|
class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
|
def __init__(self, config: Qwen2VLAConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self._attn_implementation = config._attn_implementation
|
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
|
|
|
self.gradient_checkpointing = False
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = (
|
|
output_attentions if output_attentions is not None else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
|
|
# the hard coded `3` is for temporal, height and width.
|
|
if position_ids is None:
|
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
|
elif position_ids.dim() == 2:
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# create position embeddings to be shared across the decoder layers
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
position_embeddings,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None
|
|
)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool,
|
|
):
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and 0.0 in attention_mask:
|
|
return attention_mask
|
|
return None
|
|
|
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
# to infer the attention mask.
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
|
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and not (using_static_cache or using_sliding_window_cache)
|
|
and not output_attentions
|
|
):
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
sliding_window=self.config.sliding_window,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
min_dtype = torch.finfo(dtype).min
|
|
sequence_length = input_tensor.shape[1]
|
|
# SlidingWindowCache or StaticCache
|
|
if using_sliding_window_cache or using_static_cache:
|
|
target_length = past_key_values.get_max_cache_shape()
|
|
# DynamicCache or no cache
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=target_length,
|
|
dtype=dtype,
|
|
device=device,
|
|
cache_position=cache_position,
|
|
batch_size=input_tensor.shape[0],
|
|
config=self.config,
|
|
past_key_values=past_key_values,
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type == "cuda"
|
|
and not output_attentions
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
return causal_mask
|
|
|
|
@staticmethod
|
|
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Qwen2VL
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask: torch.Tensor,
|
|
sequence_length: int,
|
|
target_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
cache_position: torch.Tensor,
|
|
batch_size: int,
|
|
config: Qwen2VLAConfig,
|
|
past_key_values: Cache,
|
|
):
|
|
"""
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
Args:
|
|
attention_mask (`torch.Tensor`):
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
|
sequence_length (`int`):
|
|
The sequence length being processed.
|
|
target_length (`int`):
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
|
dtype (`torch.dtype`):
|
|
The dtype to use for the 4D attention mask.
|
|
device (`torch.device`):
|
|
The device to place the 4D attention mask on.
|
|
cache_position (`torch.Tensor`):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
batch_size (`torch.Tensor`):
|
|
Batch size.
|
|
config (`Qwen2VLConfig`):
|
|
The model's configuration class
|
|
past_key_values (`Cache`):
|
|
The cache class that is being used currently to generate
|
|
"""
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
causal_mask = attention_mask
|
|
else:
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
|
)
|
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
if config.sliding_window is not None:
|
|
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
|
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
|
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
|
cache_position.reshape(-1, 1) - config.sliding_window
|
|
)
|
|
diagonal_attend_mask |= sliding_attend_mask
|
|
causal_mask *= diagonal_attend_mask
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
if attention_mask.shape[-1] > target_length:
|
|
attention_mask = attention_mask[:, :target_length]
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
return causal_mask
|
|
|
|
|
|
QWEN2_VL_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~policy_heads.ModelOutput`] instead of a plain tuple.
|
|
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
|
|
The tensors corresponding to the input images. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
|
|
[`Qwen2VLImageProcessor`] for processing images.
|
|
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
|
The tensors corresponding to the input videos. Pixel values can be obtained using
|
|
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
|
|
[`Qwen2VLImageProcessor`] for processing videos.
|
|
image_grid_spatiotemporal (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
The temporal, height and width of feature shape of each image in LLM.
|
|
video_grid_spatiotemporal (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
The temporal, height and width of feature shape of each video in LLM.
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
The rope index difference between sequence length and multimodal rope.
|
|
"""
|
|
|
|
|
|
class Qwen2VLForConditionalGenerationForVLA(Qwen2VLPreTrainedModel, GenerationMixin):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
|
|
config.vision_config, attn_implementation=config._attn_implementation
|
|
)
|
|
self.model = Qwen2VLModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.with_llm_head = config.with_llm_head
|
|
|
|
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
|
self.using_film = config.using_film
|
|
|
|
self.llm_loss_weight = config.llm_loss_weight
|
|
|
|
if isinstance(config.policy_head_config, dict):
|
|
config.policy_head_config = AutoConfig.for_model(**config.policy_head_config)
|
|
self.policy_head = AutoModel.from_config(config=config.policy_head_config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
if config.policy_head_config.model_type == "scale_dp_policy":
|
|
self.policy_head.init_weights()
|
|
self.input_action_proj = ActionProjector(config.hidden_size, config.hidden_size)
|
|
|
|
if self.using_film:
|
|
# Initialize projection layers and condition modulation layers
|
|
self.reasoning_action_proj = ActionProjector(config.hidden_size, config.hidden_size)
|
|
self.reasoning_film = FiLM(feature_dim=config.hidden_size, condition_dim=config.hidden_size)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
def get_rope_index(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
image_grid_spatiotemporal: Optional[torch.LongTensor] = None,
|
|
video_grid_spatiotemporal: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
|
|
|
Explanation:
|
|
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
|
|
|
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
|
|
Examples:
|
|
input_ids: [T T T T T], here T is for text.
|
|
temporal position_ids: [0, 1, 2, 3, 4]
|
|
height position_ids: [0, 1, 2, 3, 4]
|
|
width position_ids: [0, 1, 2, 3, 4]
|
|
|
|
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
|
and 1D rotary position embeddin for text part.
|
|
Examples:
|
|
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
|
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
|
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
|
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
|
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
|
text temporal position_ids: [3, 4, 5, 6, 7]
|
|
text height position_ids: [3, 4, 5, 6, 7]
|
|
text width position_ids: [3, 4, 5, 6, 7]
|
|
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
|
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
image_grid_spatiotemporal (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
The temporal, height and width of feature shape of each image in LLM.
|
|
video_grid_spatiotemporal (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
The temporal, height and width of feature shape of each video in LLM.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
Returns:
|
|
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
|
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
|
"""
|
|
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
|
image_token_id = self.config.image_token_id
|
|
video_token_id = self.config.video_token_id
|
|
vision_start_token_id = self.config.vision_start_token_id
|
|
mrope_position_deltas = []
|
|
if image_grid_spatiotemporal is not None or video_grid_spatiotemporal is not None:
|
|
total_input_ids = input_ids
|
|
position_ids = torch.ones(
|
|
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
|
)
|
|
image_index, video_index = 0, 0
|
|
for i, input_ids in enumerate(total_input_ids):
|
|
if attention_mask is not None:
|
|
input_ids = input_ids[attention_mask[i] == 1]
|
|
image_nums, video_nums = 0, 0
|
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
|
vision_tokens = input_ids[vision_start_indices + 1]
|
|
image_nums = (vision_tokens == image_token_id).sum()
|
|
video_nums = (vision_tokens == video_token_id).sum()
|
|
input_tokens = input_ids.tolist()
|
|
llm_pos_ids_list: list = []
|
|
st = 0
|
|
remain_images, remain_videos = image_nums, video_nums
|
|
for _ in range(image_nums + video_nums):
|
|
if image_token_id in input_tokens and remain_images > 0:
|
|
ed_image = input_tokens.index(image_token_id, st)
|
|
else:
|
|
ed_image = len(input_tokens) + 1
|
|
if video_token_id in input_tokens and remain_videos > 0:
|
|
ed_video = input_tokens.index(video_token_id, st)
|
|
else:
|
|
ed_video = len(input_tokens) + 1
|
|
if ed_image < ed_video:
|
|
t, h, w = (
|
|
image_grid_spatiotemporal[image_index][0],
|
|
image_grid_spatiotemporal[image_index][1],
|
|
image_grid_spatiotemporal[image_index][2],
|
|
)
|
|
image_index += 1
|
|
remain_images -= 1
|
|
ed = ed_image
|
|
else:
|
|
t, h, w = (
|
|
video_grid_spatiotemporal[video_index][0],
|
|
video_grid_spatiotemporal[video_index][1],
|
|
video_grid_spatiotemporal[video_index][2],
|
|
)
|
|
video_index += 1
|
|
remain_videos -= 1
|
|
ed = ed_video
|
|
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
t.item(),
|
|
h.item() // spatial_merge_size,
|
|
w.item() // spatial_merge_size,
|
|
)
|
|
text_len = ed - st
|
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
|
|
|
t_index = (
|
|
torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
|
)
|
|
h_index = (
|
|
torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
|
)
|
|
w_index = (
|
|
torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
|
)
|
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
|
|
|
if st < len(input_tokens):
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
text_len = len(input_tokens) - st
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
|
return position_ids, mrope_position_deltas
|
|
else:
|
|
if attention_mask is not None:
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
|
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
|
else:
|
|
position_ids = (
|
|
torch.arange(input_ids.shape[1], device=input_ids.device)
|
|
.view(1, 1, -1)
|
|
.expand(3, input_ids.shape[0], -1)
|
|
)
|
|
mrope_position_deltas = torch.zeros(
|
|
[input_ids.shape[0], 1],
|
|
device=input_ids.device,
|
|
dtype=input_ids.dtype,
|
|
)
|
|
|
|
return position_ids, mrope_position_deltas
|
|
|
|
def _update_model_kwargs_for_generation(
|
|
self,
|
|
outputs: ModelOutput,
|
|
model_kwargs: Dict[str, Any],
|
|
is_encoder_decoder: bool = False,
|
|
num_new_tokens: int = 1,
|
|
) -> Dict[str, Any]:
|
|
model_kwargs = super()._update_model_kwargs_for_generation(
|
|
outputs=outputs,
|
|
model_kwargs=model_kwargs,
|
|
is_encoder_decoder=is_encoder_decoder,
|
|
num_new_tokens=num_new_tokens,
|
|
)
|
|
|
|
if getattr(outputs, "rope_deltas", None) is not None:
|
|
model_kwargs["rope_deltas"] = outputs.rope_deltas
|
|
|
|
return model_kwargs
|
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
pixel_values: Optional[torch.Tensor] = None,
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
|
image_grid_spatiotemporal: Optional[torch.LongTensor] = None,
|
|
video_grid_spatiotemporal: Optional[torch.LongTensor] = None,
|
|
rope_deltas: Optional[torch.LongTensor] = None,
|
|
actions: Optional[torch.LongTensor] = None,
|
|
states: Optional[torch.FloatTensor] = None,
|
|
is_pad: bool = False,
|
|
is_eval: bool = False,
|
|
tinyvla: bool = False,
|
|
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
|
|
|
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
|
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
|
|
|
>>> messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image"},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
],
|
|
},
|
|
]
|
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
```"""
|
|
|
|
self.computed_type = torch.bfloat16
|
|
input_ids = input_ids.to("cuda")
|
|
attention_mask = attention_mask.to("cuda")
|
|
if not is_eval:
|
|
labels = labels.to("cuda")
|
|
actions = actions.to(dtype=self.computed_type, device="cuda")
|
|
states = states.to(dtype=self.computed_type, device="cuda")
|
|
position_ids, rope_deltas = self.get_rope_index(
|
|
input_ids, image_grid_spatiotemporal, video_grid_spatiotemporal, attention_mask
|
|
)
|
|
if pixel_values is not None:
|
|
pixel_values = pixel_values.to(dtype=self.computed_type, device="cuda")
|
|
output_attentions = (
|
|
output_attentions if output_attentions is not None else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.model.embed_tokens(input_ids)
|
|
if pixel_values is not None:
|
|
pixel_values = pixel_values.type(self.visual.get_dtype())
|
|
image_embeds = self.visual(pixel_values, grid_spatiotemporal=image_grid_spatiotemporal)
|
|
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
|
n_image_features = image_embeds.shape[0]
|
|
if n_image_tokens != n_image_features:
|
|
raise ValueError(
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
)
|
|
image_mask = (
|
|
(input_ids == self.config.image_token_id)
|
|
.unsqueeze(-1)
|
|
.expand_as(inputs_embeds)
|
|
.to(inputs_embeds.device)
|
|
)
|
|
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
|
|
|
if pixel_values_videos is not None:
|
|
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
|
video_embeds = self.visual(pixel_values_videos, grid_spatiotemporal=video_grid_spatiotemporal)
|
|
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
|
n_video_features = video_embeds.shape[0]
|
|
if n_video_tokens != n_video_features:
|
|
raise ValueError(
|
|
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
|
)
|
|
video_mask = (
|
|
(input_ids == self.config.video_token_id)
|
|
.unsqueeze(-1)
|
|
.expand_as(inputs_embeds)
|
|
.to(inputs_embeds.device)
|
|
)
|
|
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(inputs_embeds.device)
|
|
|
|
outputs = self.model(
|
|
input_ids=None,
|
|
position_ids=position_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=True,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
if tinyvla: # dex-vla supports tinyvla-style VLA
|
|
return hidden_states
|
|
|
|
if self.with_llm_head:
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
else:
|
|
logits = None
|
|
self.llm_head = None
|
|
|
|
llm_loss = None
|
|
# cross-entropy loss for VLM
|
|
if labels is not None and self.with_llm_head:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
llm_loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
# for evaluation
|
|
if is_eval:
|
|
loss = None
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return Qwen2VLCausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
rope_deltas=rope_deltas,
|
|
)
|
|
|
|
if self.using_film:
|
|
action_hidden_states = self.film_forward(
|
|
labels=labels, input_ids=input_ids, hidden_states=hidden_states
|
|
)
|
|
else: # tinyvla
|
|
action_hidden_states = hidden_states
|
|
|
|
ret = self.policy_head(
|
|
actions=actions, hidden_states=action_hidden_states, states=states, is_pad=is_pad
|
|
)
|
|
|
|
if self.with_llm_head:
|
|
loss = {
|
|
"loss": ret["loss"] + self.llm_loss_weight * llm_loss,
|
|
"llm_loss": llm_loss,
|
|
"action_loss": ret["loss"],
|
|
}
|
|
else:
|
|
loss = {
|
|
"loss": ret["loss"],
|
|
"llm_loss": (torch.ones(1) * (-100)).to(ret["loss"].dtype).squeeze(0),
|
|
"action_loss": ret["loss"],
|
|
}
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
del input_ids
|
|
del attention_mask
|
|
del position_ids
|
|
del past_key_values
|
|
del inputs_embeds
|
|
del labels
|
|
del pixel_values
|
|
del image_grid_spatiotemporal
|
|
del actions
|
|
del states
|
|
return Qwen2VLCausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
rope_deltas=rope_deltas,
|
|
)
|
|
|
|
def film_forward(self, labels, input_ids, hidden_states):
|
|
"""
|
|
Perform the forward pass for the film module.
|
|
"""
|
|
inputs_index = labels[:, :] == -100
|
|
inputs_index = inputs_index.int()
|
|
|
|
xor_array = torch.bitwise_xor(inputs_index[:, :-1], inputs_index[:, 1:])
|
|
indexes = torch.argmax((xor_array != 0).float(), dim=1)
|
|
input_embeddings = []
|
|
reasoning_embeddings = []
|
|
identity = []
|
|
for i in range(indexes.shape[0]):
|
|
end = indexes[i] + 1
|
|
temp = input_ids[i] == 151643 # pad token id for qwen2_vl
|
|
start = sum(temp.int())
|
|
input_embeddings.append(self.input_action_proj(hidden_states[i, start:end, :]))
|
|
identity.append(torch.mean(hidden_states[i, start:end, :], dim=0))
|
|
|
|
reasoning_embeddings.append(self.reasoning_action_proj(hidden_states[i, end:, :]))
|
|
input_embeddings = torch.cat(input_embeddings, dim=0)
|
|
reasoning_embeddings = torch.cat(reasoning_embeddings, dim=0)
|
|
identity = torch.stack(identity)
|
|
|
|
action_hidden_states = self.reasoning_film(input_embeddings, reasoning_embeddings).unsqueeze(1)
|
|
|
|
action_hidden_states = action_hidden_states + identity.unsqueeze(1)
|
|
return action_hidden_states
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
cache_position=None,
|
|
position_ids=None,
|
|
use_cache=True,
|
|
pixel_values=None,
|
|
pixel_values_videos=None,
|
|
image_grid_spatiotemporal=None,
|
|
video_grid_spatiotemporal=None,
|
|
**kwargs,
|
|
):
|
|
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
|
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
|
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
|
if past_key_values is not None:
|
|
if inputs_embeds is not None: # Exception 1
|
|
input_ids = input_ids[:, -cache_position.shape[0] :]
|
|
elif (
|
|
input_ids.shape[1] != cache_position.shape[0]
|
|
): # Default case (the "else", a no op, is Exception 2)
|
|
input_ids = input_ids[:, cache_position]
|
|
|
|
rope_deltas = kwargs.get("rope_deltas")
|
|
if attention_mask is not None and position_ids is None:
|
|
if cache_position is None or (cache_position is not None and cache_position[0] == 0):
|
|
position_ids, rope_deltas = self.get_rope_index(
|
|
input_ids, image_grid_spatiotemporal, video_grid_spatiotemporal, attention_mask
|
|
)
|
|
else:
|
|
batch_size, seq_length = input_ids.shape
|
|
delta = (
|
|
cache_position[0] + rope_deltas
|
|
if cache_position is not None and rope_deltas is not None
|
|
else 0
|
|
)
|
|
position_ids = torch.arange(seq_length, device=input_ids.device)
|
|
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
|
position_ids = position_ids.add(delta)
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
|
|
|
if cache_position[0] != 0:
|
|
pixel_values = None
|
|
pixel_values_videos = None
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and cache_position[0] == 0:
|
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
|
|
|
|
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
|
if model_inputs["inputs_embeds"] is not None:
|
|
batch_size, sequence_length, _ = inputs_embeds.shape
|
|
device = inputs_embeds.device
|
|
else:
|
|
batch_size, sequence_length = input_ids.shape
|
|
device = input_ids.device
|
|
|
|
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=past_key_values.get_max_cache_shape(),
|
|
dtype=self.lm_head.weight.dtype,
|
|
device=device,
|
|
cache_position=cache_position,
|
|
batch_size=batch_size,
|
|
config=self.config,
|
|
past_key_values=past_key_values,
|
|
)
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": use_cache,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"image_grid_spatiotemporal": image_grid_spatiotemporal,
|
|
"video_grid_spatiotemporal": video_grid_spatiotemporal,
|
|
"rope_deltas": rope_deltas,
|
|
}
|
|
)
|
|
model_inputs.update(kwargs)
|
|
return model_inputs
|
|
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
AutoModelForCausalLM.register(Qwen2VLAConfig, Qwen2VLForConditionalGenerationForVLA)
|