241 lines
9.5 KiB
Python
241 lines
9.5 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py
|
|
|
|
# TODO(rcadene, alexander-soare): clean this file
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import re
|
|
from dataclasses import asdict
|
|
from glob import glob
|
|
from pathlib import Path
|
|
|
|
import draccus
|
|
import torch
|
|
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
|
|
from termcolor import colored
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import LRScheduler
|
|
|
|
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
|
from lerobot.common.utils.utils import get_global_random_state
|
|
from lerobot.configs.train import TrainPipelineConfig
|
|
from lerobot.configs.types import FeatureType, NormalizationMode
|
|
|
|
PRETRAINED_MODEL = "pretrained_model"
|
|
TRAINING_STATE = "training_state.pth"
|
|
|
|
|
|
def log_output_dir(out_dir):
|
|
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
|
|
|
|
|
def cfg_to_group(cfg: TrainPipelineConfig, return_list: bool = False) -> list[str] | str:
|
|
"""Return a group name for logging. Optionally returns group name as list."""
|
|
lst = [
|
|
f"policy:{cfg.policy.type}",
|
|
f"dataset:{cfg.dataset.repo_id}",
|
|
f"seed:{cfg.seed}",
|
|
]
|
|
if cfg.env is not None:
|
|
lst.append(f"env:{cfg.env.type}")
|
|
return lst if return_list else "-".join(lst)
|
|
|
|
|
|
def get_wandb_run_id_from_filesystem(checkpoint_dir: Path) -> str:
|
|
# Get the WandB run ID.
|
|
paths = glob(str(checkpoint_dir / "../wandb/latest-run/run-*"))
|
|
if len(paths) != 1:
|
|
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
|
match = re.search(r"run-([^\.]+).wandb", paths[0].split("/")[-1])
|
|
if match is None:
|
|
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
|
wandb_run_id = match.groups(0)[0]
|
|
return wandb_run_id
|
|
|
|
|
|
class Logger:
|
|
"""Primary logger object. Logs either locally or using wandb.
|
|
|
|
The logger creates the following directory structure:
|
|
|
|
provided_log_dir
|
|
├── checkpoints
|
|
│ ├── specific_checkpoint_name
|
|
│ │ ├── pretrained_model # Hugging Face pretrained model directory
|
|
│ │ │ ├── ...
|
|
│ │ └── training_state.pth # optimizer, scheduler, and random states + training step
|
|
| ├── another_specific_checkpoint_name
|
|
│ │ ├── ...
|
|
| ├── ...
|
|
│ └── last # a softlink to the last logged checkpoint
|
|
"""
|
|
|
|
pretrained_model_dir_name = PRETRAINED_MODEL
|
|
training_state_file_name = TRAINING_STATE
|
|
|
|
def __init__(self, cfg: TrainPipelineConfig):
|
|
self._cfg = cfg
|
|
self.log_dir = cfg.output_dir
|
|
self.log_dir.mkdir(parents=True, exist_ok=True)
|
|
self.job_name = cfg.job_name
|
|
self.checkpoints_dir = self.get_checkpoints_dir(self.log_dir)
|
|
self.last_checkpoint_dir = self.get_last_checkpoint_dir(self.log_dir)
|
|
self.last_pretrained_model_dir = self.get_last_pretrained_model_dir(self.log_dir)
|
|
|
|
# Set up WandB.
|
|
self._group = cfg_to_group(cfg)
|
|
run_offline = not cfg.wandb.enable or not cfg.wandb.project
|
|
if run_offline:
|
|
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
|
|
self._wandb = None
|
|
else:
|
|
os.environ["WANDB_SILENT"] = "true"
|
|
import wandb
|
|
|
|
wandb_run_id = None
|
|
if cfg.resume:
|
|
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
|
|
|
|
wandb.init(
|
|
id=wandb_run_id,
|
|
project=cfg.wandb.project,
|
|
entity=cfg.wandb.entity,
|
|
name=self.job_name,
|
|
notes=cfg.wandb.notes,
|
|
tags=cfg_to_group(cfg, return_list=True),
|
|
dir=self.log_dir,
|
|
config=asdict(self._cfg),
|
|
# TODO(rcadene): try set to True
|
|
save_code=False,
|
|
# TODO(rcadene): split train and eval, and run async eval with job_type="eval"
|
|
job_type="train_eval",
|
|
resume="must" if cfg.resume else None,
|
|
)
|
|
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
|
|
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
|
|
self._wandb = wandb
|
|
|
|
@classmethod
|
|
def get_checkpoints_dir(cls, log_dir: str | Path) -> Path:
|
|
"""Given the log directory, get the sub-directory in which checkpoints will be saved."""
|
|
return Path(log_dir) / "checkpoints"
|
|
|
|
@classmethod
|
|
def get_last_checkpoint_dir(cls, log_dir: str | Path) -> Path:
|
|
"""Given the log directory, get the sub-directory in which the last checkpoint will be saved."""
|
|
return cls.get_checkpoints_dir(log_dir) / "last"
|
|
|
|
@classmethod
|
|
def get_last_pretrained_model_dir(cls, log_dir: str | Path) -> Path:
|
|
"""
|
|
Given the log directory, get the sub-directory in which the last checkpoint's pretrained weights will
|
|
be saved.
|
|
"""
|
|
return cls.get_last_checkpoint_dir(log_dir) / cls.pretrained_model_dir_name
|
|
|
|
def save_model(self, save_dir: Path, policy: PreTrainedPolicy, wandb_artifact_name: str | None = None):
|
|
"""Save the weights of the Policy model using PyTorchModelHubMixin.
|
|
|
|
The weights are saved in a folder called "pretrained_model" under the checkpoint directory.
|
|
|
|
Optionally also upload the model to WandB.
|
|
"""
|
|
|
|
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
|
|
register_features_types()
|
|
policy.save_pretrained(save_dir)
|
|
# Also save the full config for the env configuration.
|
|
self._cfg.save_pretrained(save_dir)
|
|
if self._wandb and not self._cfg.wandb.disable_artifact:
|
|
# note wandb artifact does not accept ":" or "/" in its name
|
|
artifact = self._wandb.Artifact(wandb_artifact_name, type="model")
|
|
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
|
|
self._wandb.log_artifact(artifact)
|
|
if self.last_checkpoint_dir.exists():
|
|
os.remove(self.last_checkpoint_dir)
|
|
|
|
def save_training_state(
|
|
self,
|
|
save_dir: Path,
|
|
train_step: int,
|
|
optimizer: Optimizer | None = None,
|
|
scheduler: LRScheduler | None = None,
|
|
):
|
|
"""Checkpoint the global training_step, optimizer state, scheduler state, and random state.
|
|
|
|
All of these are saved as "training_state.pth" under the checkpoint directory.
|
|
"""
|
|
training_state = {}
|
|
training_state["step"] = train_step
|
|
training_state.update(get_global_random_state())
|
|
if optimizer is not None:
|
|
training_state["optimizer"] = optimizer.state_dict()
|
|
if scheduler is not None:
|
|
training_state["scheduler"] = scheduler.state_dict()
|
|
torch.save(training_state, save_dir / self.training_state_file_name)
|
|
|
|
def save_checkpoint(
|
|
self,
|
|
train_step: int,
|
|
identifier: str,
|
|
policy: PreTrainedPolicy,
|
|
optimizer: Optimizer | None = None,
|
|
scheduler: LRScheduler | None = None,
|
|
):
|
|
"""Checkpoint the model weights and the training state."""
|
|
checkpoint_dir = self.checkpoints_dir / str(identifier)
|
|
wandb_artifact_name = (
|
|
None
|
|
if self._wandb is None
|
|
else f"{self._group.replace(':', '_').replace('/', '_')}-{self._cfg.seed}-{identifier}"
|
|
)
|
|
self.save_model(
|
|
checkpoint_dir / self.pretrained_model_dir_name, policy, wandb_artifact_name=wandb_artifact_name
|
|
)
|
|
self.save_training_state(checkpoint_dir, train_step, optimizer, scheduler)
|
|
|
|
relative_target = checkpoint_dir.relative_to(self.last_checkpoint_dir.parent)
|
|
self.last_checkpoint_dir.symlink_to(relative_target)
|
|
|
|
def log_dict(self, d: dict, step: int, mode: str = "train"):
|
|
assert mode in {"train", "eval"}
|
|
# TODO(alexander-soare): Add local text log.
|
|
if self._wandb is not None:
|
|
for k, v in d.items():
|
|
if not isinstance(v, (int, float, str)):
|
|
logging.warning(
|
|
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
|
|
)
|
|
continue
|
|
self._wandb.log({f"{mode}/{k}": v}, step=step)
|
|
|
|
def log_video(self, video_path: str, step: int, mode: str = "train"):
|
|
assert mode in {"train", "eval"}
|
|
assert self._wandb is not None
|
|
wandb_video = self._wandb.Video(video_path, fps=self._cfg.env.fps, format="mp4")
|
|
self._wandb.log({f"{mode}/video": wandb_video}, step=step)
|
|
|
|
|
|
def register_features_types():
|
|
draccus.decode.register(FeatureType, lambda x: FeatureType[x])
|
|
draccus.encode.register(FeatureType, lambda x: x.name)
|
|
|
|
draccus.decode.register(NormalizationMode, lambda x: NormalizationMode[x])
|
|
draccus.encode.register(NormalizationMode, lambda x: x.name)
|