lerobot/examples/6_add_image_transforms.py

52 lines
1.8 KiB
Python

"""
This script demonstrates how to implement torchvision image augmentation on an instance of a LeRobotDataset and how to show some transformed images.
The transformations are passed to the dataset as an argument upon creation, and transforms are applied to the observation images before they are returned.
"""
from pathlib import Path
from torchvision.transforms import ToPILImage, v2
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
to_pil = ToPILImage()
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")
output_dir.mkdir(parents=True, exist_ok=True)
repo_id = "lerobot/aloha_static_tape"
# Create a LeRobotDataset with no transformations
dataset = LeRobotDataset(repo_id, image_transforms=None)
# Get the index of the first observation in the first episode
first_idx = dataset.episode_data_index["from"][0].item()
# Get the frame corresponding to the first camera
frame = dataset[first_idx][dataset.camera_keys[0]]
# Save the original frame
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
print(f"Original frame saved to {output_dir / 'original_frame.png'}.")
# Define the transformations
transforms = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 1.5)),
v2.ColorJitter(contrast=(0.5, 1.5)),
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
]
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(repo_id, image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]]
# Save the transformed frame
to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100)
print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")