lerobot/tests/test_envs.py

55 lines
1.6 KiB
Python

import importlib
import gymnasium as gym
import pytest
import torch
from gymnasium.utils.env_checker import check_env
import lerobot
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.utils import preprocess_observation
from lerobot.common.utils.utils import init_hydra_config
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
@pytest.mark.parametrize("obs_type", OBS_TYPES)
@pytest.mark.parametrize("env_name, env_task", lerobot.env_task_pairs)
@require_env
def test_env(env_name, env_task, obs_type):
if env_name == "aloha" and obs_type == "state":
pytest.skip("`state` observations not available for aloha")
package_name = f"gym_{env_name}"
importlib.import_module(package_name)
env = gym.make(f"{package_name}/{env_task}", obs_type=obs_type)
check_env(env.unwrapped, skip_render_check=True)
env.close()
@pytest.mark.parametrize("env_name", lerobot.available_envs)
@require_env
def test_factory(env_name):
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[f"env={env_name}", f"device={DEVICE}"],
)
env = make_env(cfg, num_parallel_envs=1)
obs, _ = env.reset()
obs = preprocess_observation(obs)
# test image keys are float32 in range [0,1]
for key in obs:
if "image" not in key:
continue
img = obs[key]
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
env.close()